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Kinematics: overview (Afinal note on) MIObile Kinematics B
transforms, and wheels - Given this setup:
7
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] ¢ « We can map {X;,Y;} (global) &> {Xz Yz} (robot)
3 L « Use rotation matrices and velocity vector in x, y, 0
- Why do we care so much?
2
2
(A final note on) Mobile Kinematics %, Manipulator Kinematics %
« Goal: take robot from A; to By » Kinematics (possible motion of
- We know where we want it in the global setting a body) for manipulator robots
- What do we actually control? (In what frame of - End effector position and
reference?) orientation, wrt. an arbitrary
y initial frame
« A manipulator is moved
by changing (sending motion
commands to) its... ,, o
« Joints: revolute and 2D 4'1@}/: = =
prismatic
3D //:;/X—/ ﬂ‘—'*
- Point: Convert from A; to B; by changing & " OF
3
4
Manipulator State By
Configuration: where is every point on a
manipulator?
- Instantaneous description of geometry of a manipulator
- State: a set of variables which describe change of
configuration over time in response to joint forces
- Control inputs R P
- External influences ) 7
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Position & Orientation By

Mabile vs. Manipulator o

« Description: how i
many parameters...
- ...to describe planar
position & orientation?

+ ...to describe 3D
position & orientation? . y

- In 3D, it's always 6
- Whereisitonx,y,z? Ve ,)L
4

+ Whatisitsx, y,z \
rotation? Y 2

Joint vs. Cartesian space

- Joint space: we control the robot’s DoFs
+ So we issue commands in terms of those
« Mobile: “Roll forward 2 meters, rotate 53° clockwise”

- Manipulator: “Rotate joint two 90" and joint four 65,
then slide joint three 17cm”

- Cartesian space: usually we want to accomplish
things in terms of the world : - .
- Mobile: Go to the building in B2

- Manipulator: get the object on the
table in front of you
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« Kinematics lets us transform
back and forth
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Forward Kinematics & IK

ol
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0l - > —>
0y — Forward kinematics> [ .
Joint 2] —>0TCartes1an
. >
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Kinematics Problem

>

« The state space is the set of all possible states

« The state of the manipulator is:

- A set of variables which describe changes in
iguration over time, in response to joint forces +
external forces

= Where do joint forces come from?
. Controllers!

.

- So, given some set of joints, ¢
what signals do we send?

y

- In joint space vs. Cartesian space
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Goal

w5

- Goal: take robot end effector from A; to B;
- We know where we want it in the global setting
- What do we actually control?

= Point: Convert from A to B;

A B

- Now a 6 €= 6 transformation
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Review: Z Rotation Matrix* | %;
- We derived this geometrically :
- If we assume frame axes are of length 1
= a=cosf
= b=sinf Vi .
. e=-sin® cosf -sinf 0
- d=cos sinf cosf O
- Rotations around 0 0 1
z> Osand 1s
YR
a X
* AKA orthogonal rotation matrix;
13
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Other Rotation Matrices %
« Similarly derived 1 0 0
from axis of Ry = [0 cosby —sinex]
rotation and 0 sinfy cosby
trigonometric
Va“%es 9f cosby 0 sinfy
projections Ry = 0 1 0
—sinfy 0 cosBy

cosf, —sinf, 0
Rz =|sinf, cosf; 0
0 0 1
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Mobile to Manipulator ﬂls;

<

= Add a number of chained frames of reference
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Review: Z Rotation Matrix* "5;;

« In practice, it's really this:
+ Rotations around z = Os and 1s

i
cosf -sinf 0
=| sinf cosf O
0 0 1

* AKA orthogonal rotation matrix
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Complex Rotations

- What if we don't just rotate around a single axis?

= Any rotation in 3D space
can be broken down into
single-axis rotations
- Given orthogonal axes

. Multiply rotation matrices:

cusey 0 51n9y
() cosG —smH” ]

smHX cosOy

—sinfy 0 cosBy

- Can do any number of rotations; just multiply out
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Multiframe Kinematics %

- How many frames of reference do we have?

- We've been translating among frames based on
possible motion

« How do they relate?

.~ |
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Kinematic Chaining @;

- Do you need to do every transformation?

- What do we really care about?

Forward Kinematics )

- Vector @ represents the array of M joint values:

(D:[¢1 [N ¢M]

- Vector e represents an array of N values that describe
the end effector in world space:

o |

- If we need end effector position and orientation, e
would contain 6 DOFs: 3 translations and 3 rotations. If
we only need end effector position, e would just contain
the 3 translations.

e=[ e e

21
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Describing A Manipulator ’ﬁ;

« Arm made up of links in a chain

- Joints each have <x,y,z> and roll/pitch/yaw
- So, each joint has a coordinate system Z
Y,

= We label links, joints, and angles

joint i-1

joint i 20

Describing A Manipulator

= Arm made up of links in a chain
- How to describe each link?

- Many choices exist
+ DH parameters, quaternions are widely used, Euler angles...

- Joints each have coordinate system
- {xy.z, r/ply

23
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Forward & Inverse : 4‘5

Joint space (robot
space — previously R)
01, 02, ..., O)

» Forward:
Inputs: joint angles
- Outputs: coordinates of end-effector

= Inverse:
- Inputs: desired coordinates of end-
effector
- Outputs: joint angles

sonewIAUD 2SIDAU]
Sonewouny pIemIog

- Inverse kinematics are tricky
- Multiple solutions RN
- No solutions

. Dead spots Cartesian space (global
space — previously 1)

2
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Forward: i = i-1 )

- We are we looking for transformation matrix
T, going from frame i to frame i-1:

i-1

T;

» Determine position and orientation of end-
effector as function of displacements in joints

= Why?

- So we can multiply out along all joints

. i-1 i-
(also written i T or 1T} )
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Forward Kinematics and IK ’4}]

- Joint angles 5 end effector configuration

« Can string together rotations with multiplication
- So, can get end effector rotation by

- Finding rotation from
fjoint i-1 to i] X [joint i to i+1] x ... ¢>
[R2]= ROR Nl
= ROtatiOn Of end @7 " % o joint i+1
effector frame, : o ,
relative to base st —
frame
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Matrices for Pure Rotation "#5

x X
y y
a=[7] &
6; Or
Around z:
cosO —sinB 0 0 Review?

Introduction to Homogeneous
Transformations & Robot Kinematics
Jennifer Kay 2005

sin® cos® 00
0 0 10
0 0 01
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Denavit-Hartenberg Method '&&

- Efficient way to find transformation matrices

1. Set frames for all joints
- This is actually the tricky part.

2. Calculate all DH parameters from frames
4 DH parameters fully define position and orientation
(not 6

3. Populate DH parameter table

4. Populate joint-to-joint DH transformation matrices
Matrix for O-1, matrix for 1-2, etc.

5. Multiply all matrices together, in order

4/2/20

Matrices for Pure Translation

= 2 R

Xw Xr

3D: Generally:

100x

Origin point of Rin I: In
000
103 010y
010
001

0

001z

1
3 0
0 0
1 0 0001
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0-1%x1-2%x 23 % ...
29

29
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Describing A Manipulator ’*,;

« Arm made up of links in a chain
+ How to describe each link?
- Many choices exist

- DH parameters widely used
- Although it's not true that quaternions are not widely used ,
]

Yt
X

joint i+1

= DH parameters
« Denavit-Hartenberg
© i, O, di, 0

Link i

joint i ™

28
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Defining Frames for Joints ’i?]

- What's the frame of reference for a joint?
- Actually, completely flexible

- We usually choose:

. N
-1 axis through the center of h
rotation/direction of displacement
- 2 more perpendicular to that
- Which can be any orientation! / v

- We can move the origin
- Pisno longer <0, 0, 0>

» To use DH method, choose frames carefully
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Choosing Frames for DH %

» z axis must be axis of motion I+x
+ Rotation around z for revolute +z
- Translation along z for prismatic ?

- x; axis orthogonal to z;and z;;
« There's always a line that satisfies this ¢>

-y axis must follow the right-hand rule >
9 D

- Fingers point +x l . ;EL

+ Thumb points +z
- Palm faces +y ’ A

« x; axis must intersect z.; axis (may mean translating
origin) .
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Denavit-Hartenberg Method | %;

- A way of finding transformation matrix (quickly)

1. Assign DH frames to DoFs (previous slide)
This takes practice.

2. Create a parameter table
« Rows = (# frames — 1)
- Columns = 4 (always) € your DH parameters 6, o, a,d

4/2/20

Find DH Parameters .

- Fewer values to represent same info

- Efficient to calculate

X1 [k

a;; : link length — distance Z;_; and Z; along X;
a1 : link twist — angle Z;; and Z; around X;
d; :link offset — distance X;_; to X; along Z;
0; :joint angle — angle X;; and X; around Z;
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[] o a d
frame 0-1 0.1 o1 ag.) do.1
frame 1-2 01, Ao ay. d.,
frame 2-3
33
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Example: Rotation in Plane ' %;
Home

& = ay costly + ascos(f) + b2)
y = aysinfy 4+ aysin(fy + 6,)
a; = the length of ith link

35

35
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Denavit-Hartenberg Method ’#p]

- Given parameter table,

3. Fill out transformation matrix* for each transition:

cosf, -sinfcosq,,, sinfsina,,,, a,,cosb,
i _| sin 6, cosb,cosa,,, -—cosOsina,,, a,, sind,

0 sina, ;,, cosa,,,, d,
0 0 0 1

3. And multiply. Ex: R, =R'R,

R} is the same matrix as would be found by
other methods. DH is fast and efficient.
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Transformation i to i-1 '*5

a1 : distance Z;.; and Z; along X;| together: screw
;.1 : angle Zi.; and Z; around X; [ displacement

[Xi] = Transy,(a;i41) Rotx; (i iq1)

d; :distance X to X; along Z; | together: screw
0, : angle X;; and X; around Z; [ displacement

[Z;] = Transgz,(d;) Rot,(6;)

= Coordinate transformation:
7T, = (Z;][X;] = Transz,(d;) Rot z(6;) Transy, (a;11) Rotx,(ai41),
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Transg,(d,)

-1g;

Transy, (@,41)

cost,

sind,
0
0

00 cosl, —sind, 0

0o o0 . sin#, cost, 0
a,) ‘ ‘

1 d, Rotz (4,) 0 0 1

01 0 0 ]
Rotx,(a;,41)

00 a4 1 0 0

10 0 0 cosoypy —SINOy 4y

01 0 0 sino . ©OS0 4

00 1 0 0 0

Transformation in DH:

—sind, cosay oy sinf,sinag oy 640080,

cosl cosay vy —cost sino .y @ sind;
SN0y 41 COS Oy 441 d,
0 0 1
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