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Probability and Uncertainty 2:
Probabilistic Reasoning

Review of concepts from last lecture

Making rational decisions when faced with uncertainty:
® Probability
the precise representation of knowledge and uncertainty
® Probability theory
how to optimally update your knowledge based on new information
® Decision theory: probability theory + utility theory

how to use this information to achieve maximum expected utility

Basic concepts

random variables

probability distributions (discrete) and probability densities (continuous)
rules of probability

expectation and the computation of Ist and 2nd moments

joint and multivariate probability distributions and densities

covariance and principal components




Simple example: medical test results

® Test report for rare disease is positive, 90% accurate
® What'’s the probability that you have the disease?

® What if the test is repeated?

® This is the simplest example of reasoning by combining sources of information.

How do we model the problem?

® Which is the correct description of “Test is 90% accurate” ?

P(T =true) = 0.9
P(T = true|D = true) = 0.9
P(D = true|T = true) = 0.9

® What do we want to know?

P(T = true)
P(T = true|D = true)
P(D = true|T = true)

® More compact notation:

P(T = true|D = true) — P(T|D)

P(T = false|D = false) — P(T|D)




Evaluating the posterior probability through Bayesian inference

® We want P(D|T) =*“The probability of the having the disease given a positive test”

® Use Bayes rule to relate it to what we know: P(T|D)

likelihood  prior

P(T|D)P(D)
ior P(D|T) = ——+/~~——=
posterior P(D|T) P(T)
normalizing
constant
® What'’s the prior P(D)?
® Disease is rare, so let’s assume
P(D) = 0.001

® What about P(T)?
® What'’s the interpretation of that?

Evaluating the normalizing constant

likelihood  prior

posterior P(D|T) = %

normalizing
constant

e P(T) is the marginal probability of P(T,D) = P(T|D) P(D)

® So, compute with summation

P(T)= >  P(TD)P(D)

all values of D

® For true or false propositions:

P(T) = P(T|D)P(D) + P(T|D)P(D)

\ What are

these!?




Refining our model of the test

® We also have to consider the negative case to incorporate all information:

P(T\D) = 09
P(T|D) = ?
® What should it be?
® What about P(D)?
Plugging in the numbers
® Our complete expression is
P(T|\D)P(D)

P(D|T) =

® Plugging in the numbers we get:

0.9 x 0.001
P(D|T) = = 0.0089
(DIT) 0.9 x 0.001 + 0.1 x 0.999

® Does this make intuitive sense?




Same problem different situation

® Suppose we have a test to determine if you won the lottery.
® [t's 90% accurate.

® What is P($ = true | T = true) then?

Playing around with the numbers

PDIT) P(T|D)P(D)

P(T|D)P(D) + P(T|D)P(D)

® What if the test were 100% reliable?

1.0 x 0.001

= - 1.0
1.0 x 0.001 + 0.0 x 0.999

P(D|T)

® What if the test was the same, but disease wasn’t so rare?

9x0.1
P(D|T) = 0.9 <0 —05
0.9 x 0.1+ 0.1 x 0.999




Repeating the test

® We can relax, P(D|T) = 0.0089, right?
® Just to be sure the doctor recommends repeating the test.

® How do we represent this?
P(D|Ty,T5)

® Again, we apply Bayes’ rule

P(Ty,T»|D)P(D)
P(Ty,T5)

P(D|Ty,T) =

® How do we model P(T|,T2|D)?

Modeling repeated tests

P(Ty,T»|D)P(D)

PO = =700, )

® Easiest is to assume the tests are independent.

P(T1,T3|D) = P(T1{D)P(T%|D)

® This also implies:

P(Ty,T3) = P(T1)P(T»)

® Plugging these in, we have

T,|D)P(T2|D)P(D)

P(
P(D|Ty,T») = P(T1)P(T5)




Evaluating the normalizing constant again

® Expanding as before we have

B P(T1|D)P(T2|D)P(D)
P(D|Ty,Ty) = > b—(e.5; P(T1|D)P(I3| D) P(D)

® Plugging in the numbers gives us

0.9 x 0.9 x 0.001
P(D|T) = = 0.075
(DIT) 0.9 x 0.9 x 0.001 +0.1 x 0.1 x 0.999

® Another way to think about this:
= What’s the chance of | false positive from the test?

= What's the chance of 2 false positives?

® The chance of 2 false positives is still 10x more likely than the a prior probability
of having the disease.

Simpler: Combining information the Bayesian way

® |et’s look at the equation again:

_ P(L D) P(T5|D)P(D)

P(D|Ty,T) =
e CCATE
® [f we rearrange slightly: —y
e’'ve seen
P(T3| D\P(T1|D)P(D)\«— | this before!
PO === pnyem) —

® |t’s the posterior for the first test, which we just computed

P(N|D)P(D)

P(D|Ty) = P




The old posterior is the new prior

® We can just plugin the value of the old posterior

® |t plays exactly the same role as our old prior
play y P

P(T3|D)P(Th| D) P(D)

P(D|Ty,Ts) =
WD) = = p ) PO
P(T5|D) x 0.0089 This is how Bayesian
P(D|T1,T2) = ( 2P)(T ) reasoning combines old
2 information with new
information to update
® Plugging in the numbers gives the same answer: our belief states.
P(T|D)P'(D
P(DIT) = (ZIDPID) ____
P(T|\D)P'(D)+ P(T|D)P'(D)
0.9 x 0.0089
P(D|T) = . = 0.075

0.9 x 0.0089 + 0.1 x 0.9911

Bayesian inference for distributions

® The simplest case is true or false propositions

® The basic computations are the same for distributions




An example with distributions: coin flipping
® In Bernoulli trials, each sample is either | (e.g. heads) with probability 8, or 0 (tails)
with probability | — 6.

® The binomial distribution specifies the probability of the total # of heads, y, out of
n trials:

p(ylo,n) = @ §v(1— 6y~

0.25¢
0.2r
0.157
0.1r
0.05¢

(yl6=0.5, n=10)

o

1234567 8 9101112131415
y

The binomial distribution

® In Bernoulli trials, each sample is either | (e.g. heads) with probability 8, or 0 (tails)
with probability | — 6.

® The binomial distribution specifies the probability of the total # of heads, y, out of
n trials:

p(ylo,n) = @ §v(1— 6y~

0.357

0.25¢

=10)
o
w

O
N

0.157

0.25, n

o
—_

= 0.05¢

ylo

Y

1234567 8 9101112131415
y




The binomial distribution
® In Bernoulli trials, each sample is either | (e.g. heads) with probability 8, or 0 (tails)
with probability | — 6.

® The binomial distribution specifies the probability of the total # of heads, y, out of
n trials:

p(ylo,n) = @ §v(1— 6y~
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Applying Bayes’ rule

® Given n trials with k heads, what do we know about 0?

® We can apply Bayes’ rule to see how our knowledge changes as we acquire new
observations:

likelihood prior
_ p(yl0, n)p(Bn)

p(Oly,n) =
posterior p<y|n) = p(ylﬁ, n)p(e\n)de
normalizing
constant

® We know the likelihood, what about the prior?
® Uniform on [0, |] is a reasonable assumption, i.e.“we don’t know anything”.
® What is the form of the posterior?

® |n this case, the posterior is just proportional to the likelihood:

-




Updating our knowledge with new information

® Now we can evaluate the poster just by plugging in different values of y and n.

p(0ly,n) o (Z) 6Y(1 — )"V

® Check:What goes on the axes?

Evaluating the posterior

® What do we know initially, before observing any trials?

0)

0, n

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0




Coin tossing

® What is our belief about 0 after observing one “tail” ? How would you bet?
Is the p(B >0.5) less or greater than 0.5?
What about p(6 >0.3)?

=0, n=1)

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0

Coin tossing

® Now after two trials we observe | head and | tail.

=1, n=2)

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0




Coin tossing

e 3 trials: | head and 2 tails.

=1, n=3)

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0

Coin tossing

® 4 trials: | head and 3 tails.

=1, n=4)

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0




Coin tossing
Do we have good evidence that this coin is biased?

How would you quantify this statement?

1.0
mmwmz/zwmmw
0

.5

Can we substitute the expression above?
No! It’s not normalized.

® 5 trials: | head and 4 tails.

=1, n=5)

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0

Evaluating the normalizing constant

® To get proper probability density functions, we need to evaluate p(y|n):

_ pl0,n)p(0|n)
PO = i)

® Bayes in his original paper in 1763 showed that:
1
ploln) = | plyl.n)p(8ln)ds
0

1
n+1

p(0ly,n) ( ) (1—-0)""Y(n+1)




More coin tossing

® After 50 trials: 17 heads and 33 tails. What’s a good estimate of 0?

® There are many possibilities.

=17, n=50)

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0

A ratio estimate

® Intuitive estimate: just take ratio © = 17/50 = 0.34

=17, n=50)

" yin = 0.34

N

0 0.1 02 0.3* 04 05 06 0.7 0.8 09 1
0

pOly




The maximum a posteriori (MAP) estimate

® This just picks the location of maximum value of the posterior

® |n this case, maximum is also at © = 0.34.

r <«——1 MAP estimate = 0.34

=50)

p(61y=17,n

0O 01 02 03 04 05 06 0.7 08 09 1
0

A different case

® What about after just one trial: 0 heads and | tail?

® MAP and ratio estimate would say 0. Does this make sense?

® What would a better estimate be?

1)

=0, n

yIn=0

/p(ﬂly

0 01 02 03 04 05 06 0.7 08 09 1
0




The expected value estimate

® We defined the expected value of a pdf in the previous lecture:

1
E(0ly.n) / 6p(6]y, n)d8
0

2 1
~ /E(9|y—0,n—1)—§

What happens for zero trials?

1)

=0, n

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0

Much more coin tossing

® After 500 trials: 184 heads and 316 tails. What'’s your guess of 6?

=500)

p(6 1y=184, n

0 01 02 03 04 05 06 0.7 08 09 1
0




Much more coin tossing

o After 5000 trials: 1948 heads and 3052 tails. True value is 0.4.
® Posterior contains true estimate. Is this always the case?
NO! Only if the
- assumptions are
correct.
o L
S
S
o0l
c How could our assumptions be wrong?
o |
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Laplace’s example: proportion female births

® A total of 241,945 girls and 251,527 boys were born in Paris from 1745-1770.

® |aplace was able to evaluate the following

1.0
p(0 > 0.5) = / p(0ly,n)dl =~ 1.15 x 1042
0.5
. He was “morally certain” 0 < 0.5.
N But could he have been wrong?
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Laplace and the mass of Saturn

® |Laplace used “Bayesian” inference to estimate the mass of Saturn and other
planets. For Saturn he said:

It is a bet of 11000 to | that the error in this result is not within 1/100th of its value

Mass of Saturn as a fraction of
the mass of the Sun

Laplace NASA
(1815) (2004)
3512 3499.1

(3512 - 3499.1) / 3499.1 = 0.0037

Laplace is still wining.

Applying Bayes’ rule with an informative prior

® What if we already know something about 0?

® We can still apply Bayes’ rule to see how our knowledge changes as we acquire
new observations:

_ pl0,n)p(0|n)
PO = i)

® But now the prior becomes important.

® Assume we know biased coins are never below 0.3 or above 0.7.

® To describe this we can use a beta distribution for the prior.




A beta prior

® In this case, before observing any trials our prior is not uniform:

Beta(a=20,b=20)

=0, n=0)

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0

Coin tossing revisited

® What is our belief about 0 after observing one “tail” ?

® W/ith a uniform prior it was:

What will it look like with our prior?

=0, n=1)

pOly

0 01 02 03 04 05 06 0.7 08 09 1
0




Coin tossing with prior knowledge

® Our belief about O after observing one “tail” hardly changes.

=0, n=1)

pOly

0 0.1 02 03 04 05 0.6 0.7 08 0.9
0

Coin tossing

e After 50 trials, it’s much like before.

=17, n=50)

pOly

0 0.1 02 03 04 05 0.6 0.7 08 0.9
0




Coin tossing

® After 5,000 trials, it’s virtually identical to the uniform prior.

What did we gain?

5000)

p(6 1 y=1948, n

/|

0 01 02 03 04 05 06 0.7 08 09 1
0

Next time

® multivariate inference

® introduction to more sophisticated models

® belief networks




