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Probability Theory & Uncertainty
Read Chapter |3 of textbook

What you will learn today

e fundamental role of uncertainty in Al
® probability theory can be applied to many of these problems
® probability as uncertainty
® probability theory is the calculus of reasoning with uncertainty
® probability and uncertainty in different contexts
® review of basis probabilistic concepts
= discrete and continuous probability
- joint and marginal probability

- calculating probability

® next probability lecture: the process of probabilistic inference




What is the role of probability and inference in Al?

® Many algorithms are designed as if knowledge is perfect, but it rarely is.

® There are almost always things that are unknown, or not precisely known.

® Examples:
- bus schedule
= quickest way to the airport
- sensors
= joint positions

- finding an H-bomb

® An agent making optimal decisions must take into account uncertainty.

Probability as frequency: k out of n possibilities

® Suppose we're drawing cards from a standard deck:

= P(card is the Jack ¥ | standard deck) = 1/52

- P(card is a ¢ | standard deck) = 13/52 = 1/4

® What’s the probability of a drawing a pair in 5-card poker?
= P(hand contains pair | standard deck) =

# of hands with pairs

total # of hands
= Counting can be tricky (take a course in combinatorics)

= Other ways to solve the problem?

® General probability of event given some conditions:

P(event | conditions)




Making rational decisions when faced with uncertainty

® Probability

the precise representation of knowledge and uncertainty
® Probability theory

how to optimally update your knowledge based on new information
® Decision theory: probability theory + utility theory

how to use this information to achieve maximum expected utility

® Consider again the bus schedule. What’s the utility function?
= Suppose the schedule says the bus comes at 8:05.
- Situation A: You have a class at 8:30.
- Situation B: You have a class at 8:30, and it’s cold and raining.

= Situation C: You have a final exam at 8:30.

Probability of uncountable events

® How do we calculate probability that it will rain tomorrow?
- Look at historical trends?

= Assume it generalizes?

® What's the probability that there was life on Mars?
® What was the probability the sea level will rise | meter within the century?

® What's the probability that candidate X will win the election?




The lowa Electronic Markets: placing probabilities on single events

® http://www.biz.uiowa.edu/iem/

® “The lowa Electronic Markets are real-money futures markets in which contract
payoffs depend on economic and political events such as elections.”

® Typical bet: predict vote share of candidate X - “a vote share market”
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Political futures market predicted vs actual outcomes
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John Craven and the missing H-Bomb

® In Jan. 1966, used Bayesian probability and subjective odds to
locate H-bomb missing in the Mediterranean ocean.
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Probabilistic Methodology

type of collision

prevailing wind direction

J\\\

0, I, or 2 parachutes open?

N
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Probabilistic assessment of dangerous climate change
from Mastrandrea and Schneider (2004)

T T T T T T T o
=
=D
2l 24
(d) Temperature change £ 2
6 ~ L L 1 1 L TR
===~ A1Fl Several models
—A1B all SRES -4 L
5 - AT envelope H [
= A2 :
5 —B P ) : 3
8 —B2 all SAES '
@ —— 15922 (TAR method) envelope H
o 44 .
3 i e
5 I -
i '
e 33 | \
=] | 1 @
g I i
g 1 : e
E 24 1 :
[ 1 ;
'
I
13 ke L
Bars show the
range in 2100 L&
produced by
0 T r T T T e modshe ! I I I 1 1 1
2000 2020 2040 2060 2080 2100 oo & o &
Year DX M~ © ot N O
o o o o o o o O O

from Forrest et al (2001)

Climate Sensitivity (°C)
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Factoring in Risk Using Decision Theory

P(“DAI” = 55.8%) Dangerous Climate Change

P(“DAI” = 27.4%
Carbon Tax 2050
= $174/Ton

1 2 3 4 5 &
Temperature Change in 2100 (°C)
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Uncertainty in vision:What are these?
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Uncertainty in vision
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Edges are not as obvious they seem
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An example from Antonio Torralba

What'’s this?
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We constantly use other information to resolve uncertainty
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Image interpretation is heavily context dependent
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This phenomenon is even more prevalent in speech perception

® |t is very difficult to recognize phonemes from naturally spoken speech when they
are presented in isolation.

® All modern speech recognition systems rely heavily on context (as do we).
® HMMs model this contextual dependence explicitly.

® This allows the recognition of words, even if there is a great deal of uncertainty in
each of the individual parts.

De Finetti’s definition of probability

® Was there life on Mars?

® You promise to pay $1 if there is, and $0 if there is not.

® Suppose NASA will give us the answer tomorrow.

® Suppose you have an oppenent
= You set the odds (or the “subjective probability”) of the outcome
- But your oppenent decides which side of the bet will be yours

® de Finetti showed that the price you set has to obey the axioms of probability or
you face certain loss, i.e. yoU'll lose every time.




Axioms of probability

® Axioms (Kolmogorov):
0<PA)=<I
P(true) = |
P(false) = 0
P(A or B) = P(A) + P(B) — P(A and B)

® Corollaries:

- Assingle random variable must sum to I:
Y P(D=d;)=1
i=1

= The joint probability of a set of variables must also sum to I.

= If A and B are mutually exclusive:

P(A or B) = P(A) + P(B)

Rules of probability

® conditional probability

Pr(Aand B)

PrAIB) = =5 T

Pr(B)>0

® corollary (Bayes’ rule)

Pr(B|A)Pr(A) = Pr(AandB) = Pr(A|B)Pr(B)
Pr(A|B)Pr(B)

= Pr(B|4) = (A




Discrete probability distributions

® discrete probability distribution
® joint probability distribution

® marginal probability distribution
® Bayes’ rule

® independence

The Joint Distribution ...,.e: s

variables A, B, C

Recipe for making a joint distribution A B ¢
of M variables: 0 0 0

0 0 1

1. Make a truth table listing all - 1 -
combinations of values of your : 5 5
variables (if there are M Boolean : 5 :
variables then the table will have : : 5

2M rows). : : :

All the nice looking slides like this one from now on are from Andrew Moore.




The Joint Distribution ...,..e: s

variables A, B, C

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probabile it is.

A B C Prob
0 0 0 0.30
0 0 1 0.05
0 1 0 0.10
0 1 1 0.05
1 0 0 0.05
1 0 1 0.10
1 1 0 0.25
1 1 1 0.10

The Joint Distribution ...,.e: s

variables A, B, C

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must
sum to 1.

A B C Prob
0 0 0 0.30
0 0 1 0.05
0 1 0 0.10
0 1 1 0.05
1 0 0 0.05
1 0 1 0.10
1 1 0 0.25
1 1 1 0.10




Using the
Joint

One you have the JD you can
ask for the probability of any
logical expression involving

your attribute

gender hours_worked wealth
Female v0:40.5- poor 0252122 |
rich 00245895 ]
v1:40.5+ poor 0.0421768 [l
rich 00116293 ||
Male  v0:40.5- poor 0331313 [N
rich  0.0971295 [N
v1:40.5+ poor 0.134106 [N
rich  0.105933 |
P(Ey= ) P(row)

rows matching £
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Using the
Joint

P(Poor Male) = 0.4654

gender hours_worked wealth
Female v0:40.5- poor 0252122 |
rich 00245895 ]
v1:40.5+ poor 0.0421768 [l
rich 00116293 ||
CMaIe v0:40 .5 poor )_
rich  0.0971295 [N
[ v1:40.5+ poor )_
rich  0.105933 |
P(Ey= ) P(row)

rows matching £
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Using the
Joint

P(Poor) = 0.7604

gender hours_worked wealth

= R

(Female v0:40.5- poor 0.253122)_
rich 00245895 ]

v1:40.5+ poor  0.0421765) Il

rich 00116293 ||

0 R

(Male  v0:40.5- poor 0.331313)_
rich  0.0971295 [N

a .

C v1:40.5+ poor  0.134106 ) NN
rich  0.105933 |

P(E) = E P(row)

rows matching £
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Inference
with the
Joint

P(El |E2):

P(Male |

gender hours_worked wealth

(Female v0:40.5- poor 0253122 )

rich 00245895 ]
v1:40.5+ poor  0.0421765) Il

rich 00116293 ||

(Male  v0:40.5- poor 0.331373 )G
rich  0.0971295 [N

C v1:40.5+ poor 0.134106 )N
rich  0.105933 |

Z P(row)

P(El AN Ez) __ rows matching £, and E,

P(E,)

Z P(row)

rows matching £,

) = 0.4654 / 0.7604 = 0.612
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Continuous probability distributions

® probability density function (pdf)
® joint probability density
® marginal probability

® calculating probabilities using the pdf

Bayes’ rule

A PDF of American Ages in 2000

plage)

0,015 7
00 T

0,006

20 40 B0 a0

more of Andrew’s nice slides




A PDF of American Ages in 2000

Let X be a continuous random
plage’?

variable.
oot | 'A If p(x) is a Probability Density
' Function for X then...

Pla< X <b)= [ p(x)dx

00 T

0.005 1 50
P(3O <Age< 50) = Ip(age)dage

age=30

+ T t +
20 40 &0 20 e — 0 3 6

What does p(x) mean?

® [t does not mean a probability!

® First of all, it’s not a value between 0 and |.

® |[t’s just a value, and an arbitrary one at that.

® The likelihood of p(a) can only be compared relatively to other values p(b)

® [t indicates the relative probability of the integrated density over a small delta:

If p(a) u
p(b)

then
Pla-h<X<a+h)
im =a
=0 P(b—h< X <b+h)




Expectations

- E[X] = the expected value of
random variable X

= the average value we'd see
if we took a very large number
of random samples of X

o0

= pr(x) dx

X=—00

0,015 7

0,005 T

20 40 B0 a0

Expectations

plase) E[X] = the expected value of
random variable X

= the average value we'd see
if we took a very large number
of random samples of X

e 0]

= pr(x) dx

= the first moment of the
shape formed by the axes and
the blue curve

0.015 7

001 T

0,008 T

, , , , = the best value to choose if
» w 6 % .. You must guess an unknown
person’s age and you'll be
fined the square of your error




Expectation of a function

u=E[f(X)] = the expected
value of f(x) where x is drawn
from X’s distribution.

plage

= the average value we'd see
if we took a very large number
of random samples of f(X)

p= [ ) px)ds

Elage’]=1786.64

e T (E[age])* =1288.62  Note that in general:
E[f(x)]# f(E[X])

20 40 B0 a0

Variance

o? = Var[X] = the
expected squared

difference between > _ J' (x—p)” p(x)dx

plage?

- ﬂ/\(

x and E[X]

= amount you’'d expect to lose
if you must guess an unknown
person’s age and you'll be
fined the square of your error,
and assuming you play
optimally

Var[age]=498.02

4,005 1

20 40 B0 20




Standard Deviation

o? = Var[X] = the

expected squared

plage)

- qyﬂ

x and E[X]

0,006

Var[age|=498.02

difference between ol = J.(x - /U)z p(x)dx

X=—00

= amount you’'d expect to lose
if you must guess an unknown
person’s age and you'll be
fined the square of your error,
and assuming you play
optimally

o = Standard Deviation =
“typical” deviation of X from

20 40 B0 80

its mean

o =+ Var[X]

In 2
dimensions

density values: 2.1e-005 <= density < 3.4e
density <= 8e-006

-005

8e-006 <= density < 2.1e-005

weight  s5gog”

p(x,y) = probability density of
random variables (X,Y) at
location (X,y)

4500 + i1

10 15 20 25 30 35 40 45
mpg




In 2 Let X Y be a pair of continuous random
variables, and let R be some region of (X,Y)

dimensions -
P(X,Y)eR)= ”p(x, v)dydx

density values: 2.1e-005 <= density < 3.4e-005 (x,y)eR

density <= 8e-006

8e-006 == density < 2.1e-005

weight 5000,
4500 ::‘E
4000 : ?‘;‘;:::_:.
35007 ¢
30007

2500

2000

10 15 20 25 30 35 40 45
mpg

In 2 Let X Y be a pair of continuous random
variables, and let R be some region of (X,Y)

dimensions -
P(X,Y)eR)= ”p(x, v)dydx

density values: 2.1e-005 <= density < 3.4e-005 (x,y)eR
density <= 8e-006

8e-006 <= density < 2.1e-005

weight 5000 P( 20<mpg<30 and
4500 % | 2500<weight<3000) =
T
4000 iR area under the 2-d surface within
35007 afmc the red rectangle
3000° L
2500°
2000

10 15 20 25 30 35 40 45
mpg




In 2 Let X ¥ be a pair of continuous random
variables, and let R be some region of (X,Y)

dimensions -
P((X,Y)eR)= ”p(x, v)dydx

density values: 2.1e-005 <= density < 3.4e-005 (x,y)eR
density <= 8e-006
8e-006 == density < 2.1e-005
weight 5000 T P( [(mp_g-25)/10]2 +
1 -gin, ¢ [(weight-3300)/1500]2
4500 --%if <1)=
4000 :
25007 area under the 2-d surface within
| the red oval
3000
2500
2000
10 15 20 25 30 35 40 45
mpg
In 2 Let X Y be a pair of continuous random

variables, and let R be some region of (X,Y)

dimensions -
P((X,Y)eR)= ”p(x, V)dydx

(x,y)eR

Take the special case of region R = “everywhere”.

Remember that with probability 1, (X,Y) will be drawn from
“somewhere”.

So..

0

f ]op(x, y)dydx =1

X=—00 y=—00




In m Let (X, X,...X,,) be an n-tuple of continuous
random variables, and let R be some region

dimensions **-
P(X,,X,,..X, )eR)=
”...jp(xvxz,...,xm)dxm,,...dxz,dxl

(X,%5 5..0X,, JER

Independence
X LYt Vx,y: p(x,y) = p(x)p(y)

If X and Y are independent

density values: 2.1e-005 <= density < 3.4¢-005 then knowing the value of X
density <= 8e-006 does not help predict the
8e-006 <= density < 2.1e-005 Value Of Y
weight 5000 '=I :

4500 ;'i;L

40007 i

3500

30001 mpg,weight NOT

independent

2500

2000

mpg




Independence
X LYt Vx,y: p(x,y) = p(x)p(y)

acceleration

density values:

3.16228e-007 <= density < 1e-005
density <= 3.16228e-007 1e-005 < density

23
21
19
17
15
13
11
9

2000 3000 4000

weight

If X and Y are independent
then knowing the value of X
does not help predict the
value of Y
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Multivariate Expectation
tx = E[X] =[x p(x)dx

density values:

density <= 8¢-006
8e-006 == density < 2.1e-005

2.1e-005 <= density < 3.4e-005
3.4e-005 < density

E[mpg,weight] =
(24.5,2600)

The centroid of the
cloud
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Multivariate Expectation

E[f(X)]= | /(%) p(x)dx

Test your understanding
Question : When (if ever)does E[ X + Y] = E[ X ]+ E[Y]?

oAll the time?
*Only when X and Y are independent?

eIt can fail even if X and Y are independent?




Bivariate Expectation

ELf(x,0)]= [ f(x,9) p(

iff(x,y):xthenE[f(X,Y)]:.

iff(x,y):ythenE[f(X,Y)]:.

iff(x,y):x+ythenE[f(X,Y)]:.

X, y)dydx

[ x p(x,y)dydx

[ p(x, y)dydx

[ (x+ ) p(x,y)dydx

E[X +Y]=E[X]+E[Y]

Bivariate Covari

dance

o, = Cov[X,Y]= E[(X — )Y - )]

o.=0"x=Cov[X,X]|=Var[X]=E[(X —u.)’]
o, =0’y =Cov[Y,Y]=Var[Y]=E[(Y — 11,)]




Bivariate Covariance
o, =Cov[X,Y]=E[(X —p )Y —u,)]

. =0"x=Cov[X,X]|=Var{X]|=E[(X —pu.)"]
o, =0y =Cov[Y,Y]=Var[Y]=E[(Y — p,)°]

_ X
Write X = [ Y] , then

T (o} 2x (o} o )
Cov[ X] =E[(X—p )X-p ) ] =X= )
O xy Oy )
Covariance Intuition
density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006
8e-006 <= density < 2.1e-005
weight 50007
4500 L g
10007 he 1
ES e E[mpg,weight] =
“S00] L i (24.5,2600
L | ey |
2000 [, =3[0, =S
10 15 20 25 30 35 40 45
mpg




Covariance Intuition

density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006
8e-006 <= density < 2.1e-005
weight s5pp007 ¢ P
4500'~’§."
40007 iKE o - _
NG E[mpg,weid
N e (24.5,2600
3000’ ) o f —
20007 |7 =8l "N
10 15 20 25 30 35 40 45
mpg

Principal
Eigenvector

of 2
P

ht] =

Covariance Fun Facts

Cov[X] = E[(X-p )X-p,)']

Y —

True or False: If 5,, = 0 then X and Y are
independent

eTrue or False: If X and Y are independent
then c,, = 0

*True or False: If ,, = o, 5, then X'and Y are
deterministically related

eTrue or False: If X and Y are deterministically
related then o,, = o, o

y

\

Ox O

Xy

2

oc. Oy

Xy

How could
you prove
or disprove
these?




General Covariance

Let X = (X, X, ... X,) be a vector of k continuous random variables

Cov[X] = E[(X—p )X-p )] =X
Zij :Cov[Xl.,Xj]zaxixj

S is a k x k symmetric non-negative definite matrix
If all distributions are linearly independent it is positive definite

If the distributions are linearly dependent it has determinant zero

Marginal Distributions

density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006

8e-006 <= density < 2.1e-005

eight sopp” *
.

4500 -l

4000
3500
3000

2500

2000

10 15 20 25 30 35 40 45

0.00055 |
0.0004
0.00025]
0.0001

sity  0.055 |
0.04 |
© 0.025]
p(x)= | p(x,y)dy
i ffﬁg A
= e
y=—00 10 15 20 25 30 35 40 45
mpg




’p(mpg | weight = 4600) \7

Conditional

density
0.18
0.14] n [ [
Distributions
0.06 |
0.02] - . - <«
N i density values: 2.1e-005 <= density < 3.4e-005
0 115 13 145 16 19 density <= 8e-005
mpg
- 8e-006 <= density < 2.1e-005
’p@m@|wmgnz32mb © Iy Se s
density 009 weight sppp”
0.07] = ,:'j
0651 45007 e
0.03 — 4000 e
0.01] o
I l \ 3500
5 20 25 30 35 3000
mpg |
- 2500 .
| p(mpg| weight = 2000) .
density 2000 e
0.07] / Y0 15 20 25 30 35 40 45
0.05 mpg
0.03] <9
| p(x|y)=
28 32 36 40 44 _
pa p.d.f.of X whenY =y

’p(mpg | weight = 4600)

density
0.14 |
0.1 |
0.06 |
0.02] _ - <«
1 .
A I I P
T T T : T
10 115 13 145 16 19
mpg

Conditional
Distributions

density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006

8e-006 <= density < 2.1e-005

weight 50007 "I

plx| =252
- py)

[

Why?

4500« i
4000 ?
3500
3000

2500

2000

Y0 15 20 25 30 35 40 45
mpg

p(x|y)=
p.d.f.of X whenY =y




Independence Revisited
X LYt VX, y: p(x,y) = p(x)p(y)

It's easy to prove that these statements are equivalent...
VX, y:p(x,y)=p(x)p(»)
=
VX, y:p(x|y)= p(x)
N

VX, y:p(y|x)=p(y)

» More useful stuff
j P ()C | Y )dx =1 gg‘szs Iffonma” be

definitions on

X previous slides)

7) = p(x,y|2)
p(y|z)

(x| ) = PO 0P
p(y)

p(x|y,




Next time: The process of probabilistic inference

I. define model of problem
derive posterior distributions and estimators

estimate parameters from data

N W

evaluate model accuracy




