Localization
where am [?

Navigation Cycle

“Position”:
— Global map

Environment Model
Local Map Path

Real World

Perception =kl

Localization + Map Building
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¢ Challenges: noise and aliasing
¢ Odometric position estimation

# To localize or not to localize
¢ When is hard-coding better?

¢ Belief representation
¢ How do | represent the environment and my state?

¢ Map representation
¢ What kind of info does a map contain?

¢ And more...
# Probabilistic map-based localization
+ Autonomous map building

A Note on Navigation
+ Navigation is hard!

& Encompasses (at least) four components:

I. Perception: based on sensor data, what
do | know about my environment?

Navigation is a

. . . hard problem,
2. Localization: Where am | in that but many tasks
environment? depend on it

3. Cognition: What should | do now?

4. Motion Control: How do | do that?

v
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Localization # Mapping

# Sensor and odometry data used to identify where in
an environment you are

¢ Need some kind of info about environment

# Typically a map of some kind
# Physical, semantic, topological

@ Localization doesn't care about source of information
¢ Could be given a map beforehand
¢ Or constructing the map as you go

# Localization often subsumes mapping

Challenges of Localization
| 8|

# Knowing absolute position (e.g. GPS) is not sufficient

P— - Qure
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o Lat 407127, Long -740059 # o

@ Localization in human-scale
¢ "Give or take 5 meters” — in a building? On the street?

¢ May need >1 position to plan task

¢ Many sources of uncertainty

@ Sensor noise, sensor aliasing, effector noise, odometric
position estimation




Sensor Noise

@ Sensors give “noisy” (uncertain, imperfect) readings

i liad

. il
# Source of sensor noise ‘ ‘L
may be environmental

# Surfaces, illumination,
background noise...

¢ Glass walls =

¢ Or by the nature of
the sensor vivarailg
@ Interference between ultrasonic sensors
¢ Cameras in high dynamic range lighting (like outside)

¢ Or may just be because sensors are imperfect

Challenge 2: Sensor Aliasing

# Different positions give the same sensor readings

# Robots: non-uniqueness of sensors readings is normal
¢ What does that mean?

# To people, unique places look unique
¢ We're really good at picking up on differences
¢ We have really good sensors

# To robots, distinct places often look the same

+ Many-to-one mapping from environmental state to robot’s
perceptual inputs

Sensor Aliasing (3)
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Challenge 1: Sensor Noise

@ Sensor noise drastically
reduces useful sensor readings

Solutions:

* Improve Sensors

¢ Change assumptions Where am 177
# “So, if we have glass walls, we'll see readings like..."

¢ Use multiple readings

¢ Employ temporal and/or multi-sensor fusion

v.photoreview.com.au/tips/shooting/how-to-control-image-noise

Sensor Aliasing (2)

¢ Different places give the same readings

-

@ Information from sensors often not enough to identify
position from a single reading
# Robot'’s localization is usually based on a series of readings
+ Sufficient information is recovered by the robot over time

Odometry, Dead Reckoning

1. Odometry: wheel sensors only
¢ Eg, youtell your robot to go 5 cm and turn 10 degrees

2. Dead reckoning: also heading sensors
+ [fyour robot had mini-GPS

# Position update is based on proprioceptive sensors
¢ Sense movement with wheel encoders + heading sensors
¢ Integrate that into model of environment to get the position
@ Pros: Straightforward, easy
# Cons: Errors are integrated = unbound




Effector (Actuator) Noise

¢ Causes:
¢ Inexact actuation + noise in sensors: Probably not exactly 5 cm
¢ Environment: Duct tape is slippery!

¢ This error is cumulative over time, but reduced with
additional sensors (not eliminated)

@ Errors exist on a spectrum:

Deterministic Non-deterministic
(systematic): . . (random):
“This servo always “Sometimes this servo goes

turns 0.2% too far” too far or not far enough”

Classification of Errors

# Range error: Integrated path length (distance) of
movement
¢ How far have | gone?
¢ Sum of wheel movements: 5cm + 5cm + 5cm = ... 16cm?

# Turn error: similar to range error, but for turns
¢ What's my 0 from starting position?
¢ Accumulated error over multiple turns

# Drift error: difference in the error of the wheels >
error in angular orientation
¢ One wheel turns 90°, other turns 89.8°. What happens?

Odometry & Dead Reckoning

¢ Position update is based on proprioceptive sensors
¢ Odometry: uses ...
¢ Dead reckoning: uses ...

Odometry: Error sources
¢ Deterministic errors can be eliminated with calibration

¢ Random errors can be described by error models
¢ Will always lead to uncertain position estimate

¢ Major Error Sources:
¢ Limited resolution during integration (time increments,
measurement resolution ...)
& Misalignment of the wheels (deterministic)
¢ Unequal wheel diameter (deterministic)
# Variation in the contact point of the wheel
¢ Unequal floor contact (slipping, not planar ...)
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Error Severity

# Over long periods of time, turn and drift errors far
outweigh range errors.
¢ As 0 grows linearly, change in location grows nonlinearly

& Why?

# Imagine moving forward a distance d on a straight
line along axis x.

¢ As AB (angular error) grows, error in y will have a
component of d sin AB.

Odometry & Diff. Drive

¢ Discrete sampling rate At

@ As,, As; right wheel, left wheel distance travelled
¢ Changes in pose: Ax, Ay, AO

# Distance between wheels (wheel base): b

X; X Ax
p=|y| p=p+ A
V(1) 0 A6
0
()
» X/




Odometry & Diff. Drive

AO=(As,-As))/ b

¢ Derivations Y,
¢ At = Sampling rate
® As,, As; = right/left ” V)
wheel travel
¢ b =Wheel base o)
(distance between X
wheels)
A As=(As, +As)/2
, Ax=Ascos(0+6/2)
p'=p+| Ay i
AB Ay =Assin(60+6/2)

Odometry & Diff. Drive

4/23/18

¢ Kinematics A
Ax = Ascos(0+A072) V)
Ay = Assin(6+A67/2) oft)
X,
AB = As,—As, !
B b As
As = As, +As, As, +4s Aé/cos(e + 5"_&’)
s$= = . 2b
X
i+ As As,—As
p = fx, 3, 0,As5,,As) = |y + Ab/‘—Ablsin(G +— I)
’e 2 2b
- As,—As,

b

Odometry & Diff. Drive

¢ Modeling Error: Represent uncertainty of location
over time in a covariance matrix of position estimate

& Assumptions:
o Left/right wheel errors are independent

@ d o< As,, As;: Variance of wheel errors proportional to
distance traveled

# Initial matrix is Zp known

¢ S0 we can get a covariance matrix that describes
how error varies as a function of terms

Odometry & Diff. Drive

k,|As | 0
3, = covar(As,,As;) = [/| s ]

0 kjAs]

_ . T . T
X, = fo ‘Z,y . V,,.f + VA/,/.f‘ Iy VA/‘/]

Derivation in text.

Make sure you have

the general idea.

1 0 —Assin(0+A60/2

dx dy 90 |

)
Fy=V,f= V/,(_f’) = [ﬁ i ﬂ] - I:O 1 A,xcos(GJrAe/Z)}
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Odometry:

Growth of Pose Uncertainty for Straight Line Movement

# You can think of the circles (error) as where the

robot m/ght be Error Propagation in Odometry

@ Errors grow slower o

in x (direction of

x[m]

travel) than in'y o

# More likely to be i O ﬂ
off to the side than U
ahead or behind 2
of where you :
intended o4 —

Odometry:

Growth of Pose uncertainty for Movement on a Circ

¢ Now imagine moving in a curve

le

Error Propagaton in Odometry

@ Errors don't stay ol

perpendicular to

direction of

movement

08 1




Calibration of Errors

¢ The unidirectional square path experiment

Reference Wall

tart 0 ~
/ (X Yor 60) “Start
End () Preprogrammed
Preprogrammed Endy, [~ Preprog!
*
(;:‘:; square path, x4 m. .| square path, 4x4 m.
Bgtes) 87 turn instead of 90° turn
(due to uncertainty about
the effective wheelbase). ™
L .
% Curved instead of straight path
. (due to unequal wheel diameters).
In the example here, this causes
‘a 3° orientation error. </
a. A b. s

Calibration of Errors

¢ Bi-directional square path experiment

Reference Wall
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. Curved instead of s!raeiﬂht path /
(due to unequal wheel diameters). /
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Calibration of Errors

Y [mm] . oW cluster

¢ Look at actual / ”
path traversed: ‘
what errors
occur?

¢ That is, where in

L,Center of gravity
_—Vofewruns
)

X [mm]
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the x,y space do P N
we see A from “~&  Centerof gravity

expected location? 100 o of cowruns,

¢ Deterministic and 1501
non-deterministic
errors 2001 e
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Localization Summary (1)

¢ What is localization?
# Figuring out location wrt. a model of the world

¢ Purely proprioceptive approaches:
¢ Odometry: belief about motion only
¢ Wheel encoders, mostly
¢ Dead reckoning: belief about motion + heading sensors
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To Localize, Or Not To...?

—=4L5

—B
[ 0 &7
Do you need to know where

ﬁ m you are in the map? Or can
E Q you create software that
o g

¢ How to navigate between A and B
¢ Navigation without hitting obstacles
¢ Detection of goal location

does the task without that?

0 Well, it depends!

|

T
—t

Localization Summary (2)

¢ What is sensor aliasing?
+ Different locations giving the same sensor readings

¢ What is behavior-based navigation?
¢ Navigating without localizing

ATITTEE:
TR
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Behavior Based Navigation Behavior Based Navigation

¢ When you see X, do.
¢ Given these inputs, behave this way.

# When is this a good choice? communicate data  |—
v Fastto implement discover new area |—

v Robust against error accumulation
m detect goal position |—

v Effective in unchanging environment

X Does not scale to new environments avoid obstacles |—
X Behaviors must be designed alnd debugged follow right / Ieft wall
X Sensor changes change behavior coordination ] fasion

e.g. fusion via vector summation

Model Based Navigation
Belief Representation

perception |

| localization / map-building |

sensors» V [acuators)

I cognition / planning |

L]

| motion control

Location (Belief) Representatior Characterizing Belief R. (1)

¢ How do we characterize belief? ¢ Discrete vs. continuous
. . ¢ Fixed to a grid vs. infinitely fine resolution
¢ Discrete vs. continuous

¢ Fixed to a grid, or anywhere?

@ Single vs. multiple hypotheses

& At any given time, how many possible locations
are being considered?

# Probabilistic vs. bounded vs. point
@ The first two are multiple-hypothesis

Continuous




Characterizing Belief R. (1.1)

# Discrete vs. continuous
¢ Belief can be discretized on a continuous map

Ilm“g

Discrete

Continuous

Characterizing Belief R. (3)

# Probabilistic vs. bounded vs. point

o cf o
ER]ED

Point Bounded Probabilistic
Polygon

¢ You are here
¢ Somewhere in here (undifferentiated)
¢ Spread of likelihood

Probability & Combinations
# Single or multiple
@ Discrete or continuous

# These are orthogonal choices

()Q - O'

Uy Rl

Single Hypothesis  Multiple Hypothesis Discrete

Characterizing Belief R. (2)
# Single hypothesis vs. multiple hypothesis

Single Multiple
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Belief Rep. Characteristics

# Beliefs about where robot is can be:

# Single hypothesis: &
"Best guess, | am here” \
¢ Multiple hypotheses: N\ ‘ )
“Here or here?” \“
o
@ In practice we always use /
. v
probabilities. <
“Somewhere in this/these region(s)..."”

¢ Can be continuous or discretized.




