Kinematics
Manipulator Kinematics

Many slides, graphics, and ideas adapted (with thanks!) from:
Siegwart, and , Mobile Robots
Renata Melamud, An Introduction to Robot Kinematics, CMU

Rick Parent, Computer Animation, Ohio State

Steve Rotenberg, Computer Animation, UCSD

Angela Sodemann, www.youtube.com/watch?v=IVjFhNv2N8o, ASU

(A final note on) MObile KinematiCS
# Goal: take robot from A, to B,

¢ We know where we want it in the global setting
¢ What do we actually control? (In what frame of reference?)

@ Point: Convert from A, to B, by changing &y

Manipulator State

# Configuration: where is every point on manipulator?
¢ Instantaneous description of geometry of a manipulator

¢ State: a set of variables which describe

& Change of configuration in time in response to joint forces
+ Control inputs
+ External influences

(A final note on) MO biile Kinematics

+ Given this setup:

¢ We can map {X;,Y;} (global) €= {X,,Y,} (robot)

@ Use rotation matrices and velocity vector in x, y, 0

¢ Why do we care so much?

Manipulator Kinematics

# Kinematics (possible motion of a
body) for manipulator robots

¢ End effector position and orientation,
wrt. an arbitrary initial frame

¢ A manipulator is moved by
changing its. ..

¢ Joints: revolute and prismatic
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Position & Orientation




Position & Orientation

¢ Description: how many terms. ..

¢ ...to describe planar position
& orientation?

# ...to describe 3D position
& orientation?

* AKA, how many
& Degrees of freedom X

Goal

# Goal: take robot end effector from A to B,
¢ We know where we want it in the global setting
¢ What do we actually control? (In what frame of reference?)

¢ Point: Convert from A; to B,
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¢ Now a 6 €= 6 transformation
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Forward Kinematics & IK
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Kinematics Problem

¢ The state space is the set of all possible states

# The state of the manipulator is:

¢ A set of variables which describe changes in configuration
over time, in response to joint forces + external forces

¢ Where do joint forces come from?
¢ Controllers!

# So, given some set of joints,
what signals do we send?

@ In joint space vs. Cartesian space

Review: Z Rotation Matrix*

¢ We derived this geometrically in class:
# If we assume frame axes are of length 1

¢ a=cos 0
¢ b=sin6 Vi .
o c=-sinf cosf -sinf 0O
o d=cos 6 R(0)=| sin@ cosf 0
+ Rotations around 0 0 1
z> Osand 1Ts o
}'R: d

i X

1 b ;
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: - X;

* AKA orthogonal rotation matrix




Review: Z Rotation Matrix*

@ In practice, it's really this:
# Rotations around z = 0Os and 1s

cosf -sinf O
sinf cosf O
0 0 1

* AKA orthogonal rotation matrix

Complex Rotations
¢ What if we don't just rotate around a single axis?

¢ Any rotation in 3D space
can be broken down into
single-axis rotations
# Given orthogonal axes

¢ Multiply rotation matrices!

cosf® —sinf 0][ cosY 0 siny
R= [sin& cosd 0 0 1 0
0 0 1 l=siny 0 cosy

¢ Can do any number of rotations; just multiply out

Multiframe Kinematics

¢ How many frames of reference do we have?
¢ We've been translating among frames based on possible motion

¢ How do they relate?

Barrett WAM

Other Rotation Matrices

# Similarly derived from 1 0 0 ]
axis of rotatonand Ry = |0 cosf —sin0
trigonometric values 0 sinf® cos6
of projections ) i

[ cos8 0 sinf]
(Last time | threw in RY = 0 1 0
a few 2D rotations |—sin@ 0 cos6l
around y
2D > a 2x2 matrix [cosO —siné 0]
So, don't do that) RZ = |sin@ cosB 0
[ 0 0 11
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Mobile to Manipulator

¢ Add a number of chained frames of reference

Kinematic Chaining
# Do you need to do every transformation?

¢ What do we really care about?

Barrett WAM
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Describing A Manipulator { Forward Kinematics

& We will sometimes use the vector ® to represent the array of

¢ Arm made up of links in a chain
M joint values:

# Joints each have <x,\y,z> and roll/pitch/yaw
=g 4 .. 4]

# So, each joint has a coordinate system Yo

¢ We will sometimes use the vector e to represent an array of N

# We label links, joints, and angles — values that describe the end effector in world space:

e=[e1 e, .. eN]

¢ Example: If we need end effector position and orientation, e
would contain 6 DOFs: 3 translations and 3 rotations. If we only
need end effector position, e would just contain the 3
translations.

joint i-1

joint i

Forward & Inverse Describing A Manipulator

Joint space (robot
¢ Forward: space — previously R) ¢ Arm made up of links in a chain
# Inputs: joint angles 05, 0, # How to describe each link?
¢ Outputs: coordinates of end-effector 1i4] ¢ Many choices exist

# DH parameters, quaternions are widely used, Euler angles. ..

* Inverse:
¢ Inputs: desired coordinates of end-effector
+ Outputs: joint angles

# Joints each have coordinate system Yoo
& {xvz},rlply

SomeuIaUD ASIAAU]
Sonewouny premIog

@ Inverse kinematics are tricky
¢ Multiple solutions
+ No solutions

¢ Dead spots joint i-1 S
Cartesian space (global joint i
space — previously /)

Forward: i = i-1 Forward Kinematics and IK

¢ We are we looking for transformation matrix # Joint angles s end effector configuration
T, going from frame i to frame i-1:

Ti' (or"iT) (or F'T,)

# Can string together rotations with multiplication
@ So, can get end effector rotation by ?

# Finding rotation from LG
¢ Determine position and orientation of end-effector [jointi-1 to i] X [jointito i+1]x ... .
as function of displacements in joints -
o i R
{ " joint i+1
Y ¢ Rotation of end ) = Y - Linki

¢ We can multiply out along all joints
Py &l effector frame,

relative to base frame

joint i-1

joint i




Matrices for Pure Translation

< 3 units » Xy XR
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Origin point of R in I: In 3D: Generally:
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Describing A Manipulator

¢ Arm made up of links in a chain
# How to describe each link?
¢ Many choices exist
¢ DH parameters widely used
¢ Although it's not true that quaternions are not widely used - Z

& DH parameters X
¢ Denavit-Hartenberg
® a,,0,,d;,0,

Defining Frames for Joints (%

¢ What's the frame of reference for a joint?
& Actually, completely flexible

¢ We usually choose:

¢ 1 axis through the center of
rotation/direction of displacement

# 2 more perpendicular to that
¢ Which can be any orientation!

¢ We can move the origin
@ Pisno longer <0, 0, 0>

¢ To use DH method, choose frames carefully

Matrices for Pure Rotation

x X
y y
g=|2| &=
6, Ok
Around z:
cosO —sinf 0 0 Review?

Introduction to Homogeneous
Transformations & Robot Kinematics
Jennifer Kay 2005

sinf cos® 0 0
0 0 10
0 0 01
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Denavit-Hartenberg Metho¢
+ Efficient method for finding transformation matrices

I Set frames for all joints
¢ This is actually the tricky part.

2. Calculate all DH parameters from frames
¢ 4 DH parameters fully define position and orientation (not 6)

3. Populate DH parameter table

4. Populate joint-to-joint DH transformation matrices
¢ Matrix for 0-1, matrix for 1-2, etc.

5. Multiply all matrices together, in order
* 0-1x1-2x23x ..

Choosing Frames for D

Va
& 7 axis must be axis of motion o 2
¢ Rotation around z for revolute +y
¢ Translation along z for prismatic

@ x; axis orthogonal to z; and z;;
# There's always a line that satisfies this

@ y axis must follow the right-hand rule
¢ Fingers point +x -
¢ Thumb points +z
¢ Palm faces +y

@ x; axis must intersect z; ; axis (may mean translating origin)




Find DH Parameters .

e Fewer values to represent same info

Xis1

¢ Efficient to calculate

Yiq

a,  : link length — distance Zl , and Z; along X;
oc ¢ link twist — angle Z, , and Z, around X,
d, :link offset — distance X, ; to X, along Z;
0; :joint angle —angle X, ; and X around Z;

Denavit-Hartenberg Metho

# Given parameter table,
3. Fill out transformation matrix* for each transition:

cos, -sin6,cosa,

i+l

sing;sina,,,,  a,,,,cos0,

R = sinf, cosf,cose,,, —cosOsina,,, a,,sinb,
i
0 sina;,, cosa, ., d;
0 0 0 1

4 And multiply. Ex RY = R'R}

*Ifyou’d like
the derivation
of this, I'll

# R} is the same matrix as would be found by
other methods. DH is fast and efficient.

provide a link.

Transformation i to i-1

a,, : distance Z; ; and Z; along X; _together: screw

o, :angle Z,, and Z; around X; [ displacement
[Xi] = Transy,(a;i41) Rotx,(aii41)

d; :distance X|, to X, along Z, | together: screw

0, :angle X, , and X, around Z, [ displacement
[Z,] = Tl"dl]SZ’r(di) Rot‘zi(ﬂ,-)

¢ Coordinate transformation:

= [Z:][X;] = Transz,(d;) Rotz,(6;) Transy, (a; i+1) Rotx; (i it1),

# A way of finding transformation matrix (quickly)

I Assign DH frames to DoFs (previous slide)
¢ This takes practice.

2. Create a parameter table
# Rows = (# frames — 1)
o Columns = 4 (always) € your DH parameters 0, a, a, d

0 o a d
frame 0-1 0., Oy 3., do.y
frame 1-2 0,, Oy A, di,
frame 2-3

Denavit-Hartenberg Method;
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Example: Rotation in Plane

Home

& = ay cos by + az cos(fy + 6)
y = aysinfy + azsin(fy + 6,)
a; = the length of ith link

Transformation i to i-1

10 cosfl; —sinf; 0 0
0100 R sinf; cosf; 0 0
Transz,(d;) = 001 d Rotz,(6;) = 0 0 10
000 1 0 0 01
Roty, (@viq1) =
100 ajin 1 0 0 0
» |01 0 0 0 coseiyy —sinaipg 0
Transy; (i) = 001 0 0 sinajiy;  cosaipy 0
000 1 0 0 1
Transformation in DH:
costh —sinf;cosq; iy sinfisin; iy a4 cost;
ity sinf; cosf;cosq;y; —costising iy a4 sinb;
oo sin ;41 COS Qi it1 d;
0 0




