Uncertainty and Error
Propagation
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Uncertainty Representation

@ Sensing is always related to uncertainties.
¢ How can uncertainty be represented or quantified?

¢ How does it propagate — what’s the uncertainty of a
function of uncertain values?

¢ How do uncertainties combine if different sensor reading
are fused?

¢ What is the merit of all this for robotics?

Statistics Review

¢ Expected value of a real-valued random variable
X with density f(x):
* E[X] = Jx f(x)

¢ Expected value of a discrete-valued random variable
X with distribution P(x):
* E[X] =3x P(x)
¢ Suppose X corresponds to outcome of die roll
¢ EX]=1*1/64+2*%1/6+3*1/6+4*1/6+5*1/6+6*1/6
¢ EX]=1/6*(1+2+3+4+5+6)=35

¢ If random variables X1 and X2 are independent,
E[X1* X2] = E[X1] * E[X2]

Where We Are

Last Time This Time
+ RANSAC  Statistics Review
& Structure from Motion ¢ Error
¢ Sensor Fusion ¢ Error Propagation
¢ Sensor Error ¢ How a DC motor works
* Probability review o Building Motors
& Measuring Error
+ Propagating error ¢ Choosing groups!

State Estimation

# Suppose a robot obtains measurement z
¢ z = vision + edge detection

& What is P(open|z)!

Statistics Review
| 6|

# Variance: how far a set of numbers is spread out.
¢ Bl(x - w? =[x f(x) - u?
@ recall wis the mean value

# If the variables are correlated, then we have covariance

¢ Covariance
¢ Given two random variables, X1 and X2
@ E[(XI - uy)) (X2 - uyy)l
¢ What happens in the following case?

# When X1 is above its mean, X2 tends to be below its mean
¢ When X1 is above its mean, X2 tends to be way above its mean
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Combining Evidence

# Suppose our robot obtains another observation z,.
¢ How can we integrate this new information?

# More generally, how can we estimate
P(x| z;...z, )

Second Measurement

|9 ]
@ P(z,lopen) = 0.5

& P(open|z;)=2/3

P(z,|~open) = 0.6

P(z, | open) P(open | z,)

P(open|z,,z,) =
(open|z,.2) P(z,|open) P(open|z)+ P(z, | ~open) P(~open| z,)
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z, gives higher probability that the door is open.

Precision (But Not Recall)
# Precision: Reproducibility of sensor results

# A distribution of error can be characterized by:
¢ Mean error: 4
¢ Standard deviation: G
¢ How similar are two outputs from the same test?
¢ Same sensor, same environment ...
range

recision =
P (o)

# Has other meanings in actuation and cognition

Recursive Bayesian Updating
8 |
P(zn|x,z1,....z0-1) P(x]| 21,...,20-1)

P(x|z,...,z0) =
] ) P(zn|z1,...,zn-1)

Markov assumption: z, is independent of z,,...,z, _; if we know x

_ P(anX)P(X'Z],...,Zn—])

P(x|zi,...,zn
(x] ) P(zn|z1,...,20-1)
=1 P(zs|x) P(x|z1,...,20-1)
P(BIA): =, [[Pz]x) P(x)
probability of i=1.5n
Bgiven A

Error and Accuracy

¢ Error: Difference between sensor output and true value

m = measured value
error = m-v
v = true value

# Accuracy: unitless measure
error

(accuracy =1- ” )

Adapted from © R. Siegwart, ETH Ziirich — ASL

Statistical Representation of Error
@ Error:the difference between measured and true value
¢ How can we treat sensing as estimation?
¢ X:random variable representing actual value

¢ Eg, "distance = 4 meters”
¢ E[X]: estimate of the true value
¢ Given n sensor readings (;, 055 ---» Q)

@ E[X]=g(0,0,, -, 0y
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Representation of Uncertainty

# Specific errors usually unknown, but. ..

@ Errors exist on a spectrum:

Deterministic <¢mm==)> Non-deterministic (random)

¢ Some errors are consistent for some circumstances,
and can be characterized. These are more
deterministic.

# A probability density function gives a probability
density f(x) for any x in X.

Uncertainty Representation

Probability Density f(x)
Area under curve = 1:

sum of all possible

probability values. !
0 Mean

f >

Mean: Variance:

w=EX = [ owds o

2 .
o = [ (-
..if we measure X infinite times

The “wid?h"‘ of possible
and average the values we see.  values X might take.

Error Distributions

¢ Random errors: behavior of sensors modeled by some
probability distribution

# Causes and behavior of error usually unknown
¢ So what do we do?

¢ Simplifying assumptions:
& Zero-mean error
¢ Unimodal distribution
¢ Symmetric distribution
¢ Gaussian distribution

Representing Uncertainty

# Sensing as estimation problem:

true (unknown) value = X
estimate of value = E[X]

¢ Given n measurements with values : (‘5[1_”]

Probability Density f{x)

\J

T f
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Gaussian Distribution
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Simplifying Assumptions
¢ Important to remember assumptions are wrong!
Examples

# Sonar (ultrasonic) sensor more likely to
overestimate distance in real environment

# Is therefore not symmetric

¢ Might be better modeled by two modes:
¢ Mode for the case that the signal returns directly
¢ Mode for the case that the signals returns after reflections

# Stereo vision system might not correlate images
# Results that make no sense at all
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Error Propagation

¢ How do we combine a series of uncertain
measurements?
¢ (Basically the usual case for sensing)

# Propagation of uncertainty (or propagation of error)

¢ Fuse a sequence of readings into a single value

The Error Propagation Law

X v,
X — System Yi
X Yo

¢ Error propagation in a multiple-input multi-output
system with n inputs and m outputs.

Gi=f00... %)

The Error Propagation Law (&

¢ One-dimensional case of a
nonlinear error propagation
problem

¥

# It can be shown, that
the output covariance
matrix C, is given by
the error propagation law:

_ . T

C) - F.\'(,\F.\'

¢ where Bl B WG
¢ C, covariance matrix representing the input uncertainties

¢ C,:covariance matrix representing the propagated uncertainties for the outputs.
@ Fyis the Jacobian matrix defined as: . py
9 9
e ) a, x|
F:w:[vvm')’] N Y | R [ .
X X o o

# which is the transposed of the gradient of f(X). ax, X))

Error Propagation Law

¢ The effect of variables’ uncertainty on the uncertainty of a
function that depends on them.

Absolute error Ax
@ Error on some quantity, Ax, is given as

Standard deviation: the positive square root
of variance, 02

+ With a probability distribution, can find confidence limits
¢ How sure are we of our estimate?

Error Propagation Law

¢ Imagine extracting a line
based on point measurements
with uncertainties.

¢ The model parameters p;
(length of the perpendicular)
and 0; (its angle to the
abscissa) describe a
line uniquely.

¢ The question:

¢ What is the uncertainty of the extracted line knowing the
uncertainties of the measurement points that contribute to it?
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