
	 1	

CMSC 479/679: Class Project
For	this	class,	the	project	will	consist	of	building,	programming,	and	ultimately	demonstrating	tasks	
being	performed	a	GoPiGo	3	platform.	The	platform	consists	of	two	actuated	wheels,	a	body,	a	laser-
based	distance	sensor,	and	a	Raspberry	Pi	that	serves	as	the	“brain.”	

Overview
In	order	to	make	sure	everyone	is	on	track,	there	will	be	a	series	of	milestone	deliverables,	which	
will	 be	 a	mix	 of	 individual	 and	 group	 assignments.	Details	 about	 each	milestone	will	 be	 updated	
when	the	previous	one	is	due,	and	this	document	will	be	updated	over	time.	

0. Form	groups,	fill	out	group	survey	(tiny.cc/robotics-survey)	
	

1. Build	and	proof	of	life	
o Write	up	individual	responses	to	a	survey	about	building	
o Demo	robot	working	using	included	software	

§ Remote	control	
§ Programmatic	control	

	
2. Install	Linux-based	OS	and	start	Python	control	

o Install	Raspbian	
§ Optional:	Install	ROS	(see	details	on	this	milestone)	

o Programmatic	readouts	from	all	sensors	
o Programmatic	control	of	all	servos	
o Wall-following	(initial)	

	
3. Demonstrate	maze	navigation	

o Wall-following	in	a	simple	maze	
o Demonstrate	initial	maze-navigation	capability	using,	e.g.,	random	walk	

§ Localization	and	mapping!	
o Submit	overview	of	methodology	and	intended	approach	(679	only)	

	
4. Final	code	submission	due	

o Improve	maze-following	(better	sensor	use?	Better	AI?	Different	sensors?	This	will	
be	where	you	can	really	make	it	your	own!)	

o Initial	writeup	of	design	decisions	and	methodology	(679	only)	
	

5. Final	writeup	due	(templates	will	be	provided)	
o Overview	of	progress	
o Video	of	behavior	

	
6. In-class	competition/demos!	

Notes
A	note	on	group	work:	it	 is	 really	 important	 that	everyone	be	 involved	 in	every	stage	of	 the	
process.	If	your	group	is	having	trouble	(either	you’re	having	trouble	working	with	your	group,	or	
there’s	 someone	 in	 your	 group	 who	 is	 having	 trouble	 meeting	 and	 participating),	 please	 let	 me	
know	as	soon	as	possible,	so	we	can	fix	it.	

	 2	

Milestone 0
We	will	 start	 building	 robots	 on	March	15th	 27th,	 in	 class.	 Before	 then,	 you	 should	 have	 finalized	
your	 group	 and	 hopefully	 begun	 meeting.	 When	 your	 group	 is	 finalized,	 please	 fill	 out	
tiny.cc/robotics-survey.	We	will	take	attendance	on	that	day.	

1. Build	your	robot:	www.dexterindustries.com/GoPiGo/get-started-with-the-gopigo3-
raspberry-pi-robot/1-assemble-gopigo3	

2. Attach	the	distance	sensor:	www.dexterindustries.com/GoPiGo/get-started-with-the-gopigo3-
raspberry-pi-robot/4-attach-the-camera-and-distance-sensor-to-the-raspberry-pi-robot	

Milestone 1
Our	first	milestone	will	be	construction	of	the	robot	and	“proof	of	life”	(that	is,	a	demo	of	it	working	
and	doing	robot	things).	We	will	be	working	from	this	robot,1	and	using	DexterOS	to	begin.	You	may	
wish	 to	 start	 reading:	 assembly	 instructions	 at	 https://www.dexterindustries.com/GoPiGo/get-
started-with-the-gopigo3-raspberry-pi-robot/1-assemble-gopigo3.	

Step	1:	Connect	and	Rename	

3. Connect	to	your	robot:	studio.dexterindustries.com/cwists/preview/1218x	

4. Immediately	rename	it	to	something	unique	(consider	including	your	team	name	or	an	
unusual	last	name)	by	following	the	instructions	in	this	video:	
www.youtube.com/watch?v=uao88f_n5Kk	

à	Note:	If	we	are	all	working	in	the	same	physical	space,	we	will	have	to	do	this	one	at	a	
time.	Since	we’re	doing	this	step	in	class,	I	will	coordinate	this.	If	you	do	this	outside	of	
class,	make	sure	you	communicate	with	other	teams	working	nearby.		

5. Reboot!	

6. Email	the	professor	and	TA	the	MAC	(hardware)	address	of	your	robot’s	wireless	card:	
a. SSH	into	your	robot,	using	its	new	name,	e.g.:	ssh	dex-prof.local	

b. Run	ifconfig	on	the	command	line	and	find	the	hardware	address	on	the	wlan0	device—
it	will	be	a	sequence	of	six	two-digit	hex	codes	separated	by	spaces,	like:	0D:43:A1:[etc]	

à	You	will	do	this	step	in	Milestone	2;	it	only	works	in	Raspbian.	

Step	2:	Control	and	Proof	of	Life	

7. Attach	to	the	DexterOS	interface	(remembering	to	use	your	new	wifi	name),	as	in	step	3	above.	

8. Controlling	the	robot:	

c. Manually:	Go	to	“Drive”	and	drive	the	robot	around,	using	the	arrow	keys	and	space	bar.	

d. Programmatically:	Go	to	“Code	in	Python”	and	perform	some	of	the	projects	listed.	Make	
sure	the	process	of	simple	robot	control	in	Python	is	comfortable.	

à	Note:	because	we	are	doing	this	 in	class,	you	do	not	need	to	submit	any	kind	of	video;	
just	show	me	that	you	have	it	working.	

9. Do	your	writeup	of	the	build	and	control	process	at:	tiny.cc/build-writeup.	

																																								 																					
1	https://www.dexterindustries.com/shop/gopigo-advanced-starter-kit/	

	 3	

Milestone 2
Our	 second	 milestone	 will	 be	 installing	 Raspbian	 on	 your	 robot,	 and	 beginning	 the	 process	 of	
controlling	the	robot	using	a	more	complex	infrastructure.	(More	details	after	midterm!)	

Step	1:	Install	Raspbian	

1. Carefully	retrieve	your	microSD	card	from	your	robot.	This	can	be	ticklish—you	may	have	to	
do	some	disassembly	to	avoid	cracking	the	card;	go	slowly	and	patiently.	

2. Follow	the	instructions	for	installing	Raspbian	on	the	card:	
www.dexterindustries.com/howto/install-raspbian-for-robots-image-on-an-sd-card	

à	Note:	The	most	recent	 .rar	file	 in	SourceForge	seems	to	be	broken;	I	had	to	go	back	to	
the	previous	version.	Please	keep	us	informed	if	you	encounter	similar	difficulties.	

3. Reinstall	the	SD	card	in	the	robot.	

Step	2:	Connect	to	the	Robot	

4. You	will	need	to	first	connect	over	Ethernet	to	configure	its	wireless	setup:	
www.dexterindustries.com/GoPiGo/get-started-with-the-gopigo3-raspberry-pi-robot/2-
connect-to-the-gopigo-3/Raspbian-For-Robots-Operating-System	

a. Plug	an	Ethernet	cable	into	your	computer	or	a	wired	or	wireless	switch	or	router	(not	
one	of	UMBC’s,	please).	I	will	have	one	in	class,	and	can	do	this	if	we	get	this	far.	

b. Start	the	VM	image	(in	a	browser	on	the	computer).	

c. Follow	the	instructions	in	the	link	above	to	“SET	UP	WIFI.”	You	will	want	your	robot	to	
know	how	to	connect	to	two	networks:		UMBC	Devices	(for	when	you	are	on	campus),	
and	your	home	network.	See	the	screenshots	below	for	what	this	should	look	like.	

	
d. On	the	robot,	edit	the	file	/etc/wpa_supplicant/wpa_supplicant.conf	.	Under	the	
line	ssid="UMBC Devices",	add	the	line:	scan_ssid=1	;	save	and	quit	

5. Change	the	name	and	password	of	your	robot	to	something	unique:	
www.dexterindustries.com/howto/change-the-hostname-of-your-pi	

6. Email	the	professor	and	TA	the	MAC	(hardware)	address	of	your	robot’s	wireless	card:	
a. SSH	into	your	robot,	using	its	new	name,	and	run	ifconfig	on	the	command	line	and	find	
the	hardware	address	on	the	wlan0	device—it	will	be	a	sequence	of	six	two-digit	hex	
codes	separated	by	spaces,	like:	0D:43:A1:[etc]	

Caps	
matt

Home	
network	
and	
password	

	 4	

Step	3:	Infrastructure	Design	

7. Start	 considering	 your	 software	 architecture.	 You’re	 going	 to	 want	 sensors,	 motor	 control,	
decision-making,	 and	 any	 other	 functions	 (like	 mapping)	 in	 a	 single,	 coherent	 software	
infrastructure.	How	will	these	pieces	fit	together?	Discuss	the	options	and	write	a	short	(~half	
page)	description	of	your	approach	that	addresses	at	least	the	following	points:	

a. What	is	the	overall	architecture	of	your	system?	

b. What	are	you	using	for	development?	Does	anyone	have	an	IDE?	Does	everyone?	

c. Are	you	using	ROS	to	pass	messages?	If	not,	how	are	components	communicating?	

d. How	are	team	members	sharing	code	and	making	sure	everyone	can	do	development—
github,	bitbucket,	or	something	else?	(Do	use	a	version	control	system	of	some	kind.)	

8. Install	ROS	on	your	robot	(optional).	

a. Using	ROS	for	the	remainder	of	the	project	is	optional.	However,	if	you	want	really	good	
performance,	 it	 is	recommended,	because	ROS	has	a	number	of	 tools	 that	will	be	useful.		
As	an	incentive,	note	that	you	are	allowed	to	use	any	standard	ROS	tools	or	in	any	of	the	
experimental	 gopigo	 nodes,	 and	 (with	 permission)	 other	 nodes	 you	 find.	 This	 includes	
servo	 controls	 and	 ways	 of	 getting	 messages	 from	 the	 sensors,	 but	 also	 odometry,	
mapping,	localization,	several	kinds	of	SLAM,	and	visualization	in	rviz.	

b. Instructions	for	installing	ROS	under	Jessie:	
wiki.ros.org/ROSberryPi/Installing%20ROS%20Indigo%20on%20Raspberry%20Pi	

Step	4:	Control	the	Robot	

Background	information:		
The	following	web	pages	will	give	you	an	overview	of	programming	the	GoPiGo3	and	has	a	
number	of	useful	 links,	 including	to	the	GoPiGo3’s	github	page	and	examples	of	how	to	use	
the	encoders	and	servos:	

• www.dexterindustries.com/GoPiGo/get-started-with-the-gopigo3-raspberry-pi-
robot/3-program-your-raspberry-pi-robot/python-programming-language	

• gopigo3.readthedocs.io/en/master	

You	 may	 import	 easygopigo3.	 You	 may	 use	 code	 found	 in	 any	 of	 the	 tutorials	 or	 code	
provided	by	Dexter,	with	proper	attribution.	This	means	when	you	use	their	code,	you	must	
include	source	clearly	in	the	comments	of	each	file	and	at	the	top	of	each	function.		

9. In	the	architecture	you	defined	above,	write	functions	to	control	the	servos	on	your	robot.	

a. Turn	the	distance	sensor	some	number	of	degrees	(specified	by	an	argument)	right/left.	

b. Turn	wheel	1	or	2	forward	or	backward	independently	(this	can	be	several	functions,	or	a	
single	function	that	takes	arguments).	

c. Control	the	wheels	together	to	move	the	robot	forward/backward.	

So	 far,	 you	 have	 been	 following	 relatively	 tightly	 defined	 steps	 for	 the	 project.	 From	
here	on	out,	you	will	have	a	lot	of	flexibility	in	how	you	want	to	proceed.	This	means	you	
should	 think	 about	 the	 effects	 of	 your	 design	 decisions	 and	 start	 thinking	 about	 the	
high-level	architecture	you	want	to	implement.	Any	reasonable	implementation	can	get	
full	credit;	however,	some	choices	will	be	easier	and/or	more	successful	than	others!	

	 5	

d. Control	the	wheels	together	to	turn	the	robot	90°	right/left.	

e. Control	the	wheels	together	to	turn	some	number	of	degrees	(specified	by	an	argument)	
right/left.	

f. Turn	the	wheels	in	order	to	move	the	robot	a	specified	distance	forward	or	back	(in	cm).	

Step	5:	Read	from	Sensors	

10. Write	functions	to:	

a. Get	a	single	reading	from	the	distance	sensor.	

b. Get	a	continuous	stream	of	readings	from	the	distance	sensor.	

c. Read	the	encoders’	position,	in	degrees.	(See	
github.com/DexterInd/GoPiGo3/blob/master/Software/Python/easygopigo3.py)	

d. Print	the	encoders’	positions	in	a	continuous	stream.	

Step	6:	Put	it	Together	

11. In	order	to	demonstrate	all	of	the	above,	write	a	short	routine	that	performs	the	following	
steps	(without	any	human	intervention)	and	take	a	video.	The	console	should	be	printing	the	
output	of	the	distance	sensor	4	Hz.		

a. Approach	a	wall	head-on	until	the	robot	is	10cm	away.	

b. Rotate	90°	right.	

c. Rotate	the	servo	to	point	to	the	wall.	

d. Proceed	forward	along	the	wall	another	40cm.	

e. Note:	during	step	d,	the	robot	does	not	need	to	perform	any	course	correction	to	remain	
an	exact	distance	from	the	wall	(that	will	be	the	next	milestone).	However,	if	the	robot	is	
in	danger	of	crashing	into	the	wall,	it	should	stop;	something	should	be	monitoring	the	
distance	sensor.	

Turnins	for	Milestone	2	

1. All	code	written	for	this	milestone,	in	a	form	that	can	be	put	on	our	robot	and	tested.	
2. A	writeup	with	the	following	sections:	

• The	overall	design	and	architecture	decisions	you	made	in	Step	3,	including	code	
management	and	version	control.	Consider	including	a	link	to	your	repo.	

• A	short	description	of	how	to	install	your	code	and	run	the	demo	you	wrote	for	Step	11.	
(Unzip	it	somewhere	on	the	robot?	Run	a	ROS	node	installer?	..?)	

• Any	code	sources	that	you	used	and	what	code	you	incorporated	or	referenced.	

3. A	short	video	of	your	robot	performing	its	demo.	

	

	 6	

Milestone 3
Our	third	milestone	has	two	major	parts:	Decide	on	a	strategy	for	the	remainder	of	the	project	(and	
write	it	up);	and	demonstrate	your	robot	doing	basic	uninformed	maze-following,	plus	initial	work	
on	pursuing	your	strategy.		

Step	0:	Build	a	Maze	

Your	code	will	be	much	easier	to	debug	from	now	on	if	you	actually	have	a	maze	to	work	in.	The	
easiest	thing	to	do	will	be	to	build	a	maze	(usually	from	cardboard	on	a	cardboard	base).	Sample	
mazes	are	shown	below.	

The	mazes	we	are	working	with	will:	

• Be	laid	out	on	a	grid	of	squares	11	inches/28	centimeters	wide,	which	will	give	a	well-
centered	robot	room	to	turn.	

• Always	have	one	or	more	legal	paths.	
• Have	walls	higher	than	the	default	mounting	of	the	distance	sensor.		
• Contain	dead	ends	and	wrong	paths,	as	well	as	one	or	more	correct	solutions.	
• Have	loops.	

									map	1	 	 										map	2	 	 	 map	3	 	 	 	 map	4	

These	sample	mazes—arranged	from	least	to	most	complex—cover	a	lot	of	cases.	You	may	
construct	one	or	more	of	these,	or	design	your	own.	You	shouldn’t	build	all	of	these,	and	for	this	
milestone,	I	do	not	recommend	building	something	very	complicated.	

Step	1:	Implement	Random	Exploration	

The	simplest	form	of	maze	solving	is	random	exploration.	The	robot	maintains	no	state	about	the	
maze	(such	as	a	map);	instead,	every	time	a	navigation	choice	is	encountered,	it	makes	a	random	
decision	about	what	path	to	take.	This	approach	is	guaranteed	to	solve	the	maze	given	infinite	time;	
for	simple	mazes	it	works	well	in	practice,	for	very	complex	mazes	it	is	intractably	slow.		

Your	first	step	is	to	implement	such	a	random	solver.	

1. Identify	decision	points.		
a. In	order	to	perform	a	random	exploration,	the	robot	must	be	aware	when	there	are	
opening(s)	requiring	it	to	make	a	decision.	This	means	turning	the	robot	or	sweeping	the	
servo	to	be	aware	of	walls	and	openings.	

b. Making	random	navigation	decisions	and	successfully	executing	those	choices.	

	

2. At	each	decision	point,	randomly	choose	a	direction.	
a. The	robot	does	not	need	to	consider	reversing	course	(that	is,	turning	180°)	at	every	

decision	point.	(At	dead	ends	that	is	the	only	option.)	

	 7	

b. At	every	decision	point,	you	must	consider	all	the	possible	directions	the	robot	could	go.	

i. At	T-junctions,	there	are	2	choices;	and	four-ways,	there	are	three	choices.	At	a	turn	
or	a	dead	end	there	is	only	one	choice.	

à	Note:	To	be	clear,	for	this	milestone,	the	navigation	must	be	random.		
	

3. Implementation	details:	
a. Your	code	should	have	some	form	of	readout	that	clearly	shows	when	the	robot	thinks	a	

decision	point	is	reached,	what	the	choices	are,	and	what	the	robot	chose.	

b. You	will	lose	points	for	bumping	into	the	walls.	

c. Although	the	robot	should	go	fast	enough	to	complete	the	mazes	above	in	a	reasonable	
amount	of	time	(~5	minutes),	you	will	not	gain	points	for	going	faster.	Don’t	
concentrate	on	speed;	concentrate	on	sensor	data	and	movement	precision.	

d. We	will	put	the	robot	down	in	entry,	and	when	it	exits	the	maze,	pick	it	up.	The	robot	
does	not	need	to	find	the	entry	or	recognize	that	it	has	exited.	

Step	2:	Design	Decisions	

4. Mapping	and	localization.	In	order	to	pursue	a	more	complex	strategy,	you	need	to	decide	
whether	you	are	handling	the	following	problems:	mapping	and	localization.	Mapping	means	
building	and	maintaining	a	map	of	the	space	as	the	robot	traverses	it;	localization	means	
maintaining	a	belief	about	where	the	robot	is	at	all	times.	You	must	consider	whether	you	
wish	to	do	mapping	and/or	localization,	and	if	so,	how	to	implement	it.	

a. What	will	your	knowledge	representation	look	like?	(Will	you	maintain	a	map	laid	out	on	
a	grid?	Will	you	keep	track	of	the	geometric	relationship	of	intersections?)		

e. Will	you	write	an	implementation,	or	use	some	existing	implementation	of	mapping,	
localization,	or	SLAM?	

5. Strategy.	Based	on	whether	you	have	mapping	and	localization	information,	exactly	how	are	
you	handling	the	maze	solving?	What’s	the	most	efficient	approach?		
a. With	a	physical	agent:	

i. Actual	movement	is	expensive	and	slow	
ii. Every	intersection	you	go	past	is	a	chance	for	sensor	failure	
iii. The	farther	you	go	the	worse	your	localization	gets	

An	“efficient”	strategy,	therefore,	minimizes	these	things,	notcomputation.	
b. Remember	that	we	are	working	with	very	simple	mazes.	A	lot	of	the	complexity	you	will	

encounter	will	have	to	do	with	successfully	parsing	sensor	data,	performing	localization,	
and	managing	movement	without	bumping	into	walls.	Don’t	go	overboard	coming	up	
with	something	amazingly	clever.	

c. Don’t	try	to	do	this	from	scratch!	Do	some	literature	searching.	Don’t	forget	to	take	notes	
so	you	can	cite	anything	useful	you	find.	

Turnins	for	Milestone	3	

1. All	code	written	for	this	milestone,	in	a	form	that	can	be	put	on	our	robot	and	tested,	with	a	
short,	useful	README	text	file	describing	how	to	run	it.	

2. A	PDF	writeup	with	the	following	sections:	

	 8	

• A	short	description	of	how	to	install	your	code	and	run	the	demo	you	wrote	for	Step	11.	
(Unzip	it	somewhere	on	the	robot?	Run	a	ROS	node	installer?	..?)	

• Any	code	sources	that	you	used	and	what	code	you	incorporated	or	referenced.	

3. A	video	of	your	robot	navigating	a	simple	maze.	(The	first	maze	shown	above	is	fine,	as	is	
anything	more	complex.)	Make	sure	the	video	includes	the	output	showing	the	decision	points	
encountered	and	the	decisions	made.	This	should	be	less	than	five	minutes	and,	if	your	maze	is	
complex,	doesn’t	need	to	show	the	entire	solving	process.	

4. A	PDF	writeup	of	the	strategy	you	have	chosen,	including	your	intentions	for	localization	and	
mapping	and	a	how	you	plan	to	implement	them.	All	further	writeups	will	be	extensions	of	
this	document,	so	consider	structure	carefully.	

• 479	only:	This	should	be	a	¾-	to	2-page,	single-spaced	document,	including	any	graphics,	
written	in	complete	sentences,	with	meaningful	section	headers.	

• 679	only:	From	here	we	will	be	working	in	conference	paper	format.	Download	either	the	
LaTeX	or	Word	template	from	www.roboticsconference.org/information/authorinfo	
(look	under	“Paper	Formatting”)	and	use	it	for	your	writeup.	Add	section	headings	for	(at	
least)	Introduction,	Approach,	Experimental	Evaluation,	and	Conclusion.	The	design	
decisions	you	make	in	this	milestone	should	go	into	Approach.	

Milestone 4
At	 this	 stage,	 you	 should	 have	 a	 robot	 that	 is	 successfully	 navigating	 a	 maze,	 making	 random	
choices	at	intersections,	and	maneuvering	smoothly	without	bumping	into	walls.	The	next	step	is	to	
implement	a	more	informed	approach:	the	strategy	you	described	in	Milestone	3.	From	this	point	
on,	project	milestones	become	much	less	specific.	

Tasks	for	this	milestone	are:	(1)	improve	your	robot	in	clever,	effective	ways;	and	(2)	write	up	the	
decisions	you’ve	made.	

Goals:	

It	 can	 be	 helpful	 to	 consider	 how	we	will	 grade	 the	 final	work.	 Note	 that	 your	 robot	will	 not	 be	
graded	primarily	on	its	ability	to	quickly	execute	a	maze,	but	you	do	need	to	accomplish	this	task	to	
get	a	good	score.	We	will	also	grade	based	on	the	clarity	and	elegance	of	your	code,	the	correctness	
of	your	approach,	and	how	well	your	strategy	captures	appropriate	robotics	concepts	in	solving	the	
problem.	We	 will	 consider	 four	 main	 areas,	 which	 also	 appear	 in	 the	 writeup:	 moving,	 sensing,	
strategy,	and	core	robotics	concepts.	

• Successful	movement:		
o Does	the	robot	bump	into	anything?		
o Does	it	stay	centered	in	the	corridors,	and	if	not,	why	not—is	it	by	design	or	by	accident?		
o Does	it	traverse	the	maze	relatively	quickly?	Speed	is	low	priority,	but	it	does	have	to	finish.	

• Successful	sensing:		
o Does	the	robot	use	its	sensors	appropriately?		
o What	happens	if	you	get	unexpected	/	unexpectedly	noisy	sensor	inputs?	

• Maze	strategy:		
o Is	the	strategy	you	have	chosen	appropriate	for	the	complexity	of	the	problem?		
o Are	there	(legal)	cases	your	robot	can’t	handle?		

	 9	

o How	well	does	your	approach	handle	unexpected	circumstances	(for	example,	really	bad	
sensor	data?	

• Robotics	concepts:	
o Are	you	using	(or	not	using)	localization,	mapping,	and	SLAM	appropriately?	
o Are	you	using	appropriate	belief	and/or	map	representations?	
o Are	you	using	a	suitable	mix	of	behavior-based	and	location-aware	decision-making?	
o Are	your	solutions	informed	(by	this	class)	and	elegant,	or	hacked	together?	

Step	1:	Implement	Improved	Maze	Navigation	

By	now	you	should	have	a	pretty	good	idea	how	you’re	going	to	implement	a	solution	to	the	overall	
maze	 problem.	 You	 should	 be	 making	 final	 decisions	 about	 your	 strategy,	 including	 how	 (and	
whether)	 to	 apply	 the	 tools	we’ve	 learned	 over	 the	 course	 of	 the	 semester.	 Your	 strategy	 at	 this	
point	should	not	be	random.		

1. Implement	an	initial	(working!)	approach	to	the	overall	maze-solving	strategy	your	group	has	
chosen,	including	steps	such	as	localization	and	mapping.	

2. Demonstrate	the	working	implementation	in	a	test	setup.	This	should	be	complex	enough	to	
fully	test	the	strategy	you’ve	chosen.	

Step	2:	Write	Up	Work	

Your	previous	writeup	 should	have	 given	 you	 a	 good	 infrastructure;	 at	 this	 stage,	 you	 should	 be	
filling	out	the	writeup	with	text	about	the	details	of	the	approach	you	took.	Your	paper	should	have:	

3. At	least	an	outline	of	a	related	work	section,	introduction,	and	conclusion.	Related	work	
should	include	correctly	formatted	citations	for	any	code	you	incorporated	or	referenced,	as	
well	as	any	papers	or	sources.	

4. An	experimental	evaluation	section,	containing	an	outline	describing	how	you’re	testing	your	
robot	and	what	you’re	finding	so	far.	

5. A	written	approach	section,	which	should	describe	your	overall	approach.	In	addition	to	what	
your	robot	is	doing,	at	least	touch	on	most	of	the	following	points:	
• Strategy:		

o Is	your	approach	deterministic?	
o How	efficient	is	your	chosen	solving	algorithm?	
o Have	you	altered	your	robot?	If	so,	how	and	why?	

• Robotics:	
o Are	you	localizing?	If	so,	using	what	approach?	What	belief	representation	are	you	
using?	If	not,	why	not,	and	what	are	you	doing	instead?	

o Are	you	mapping?	What	map	representation	are	you	using?	If	not,	how	are	you	solving	
efficiently?	

o Are	you	performing	SLAM?	How?	
o Is	your	approach	partly	or	fully	behavior-based?	In	what	way(s)?	
o What	else	from	this	class	are	you	incorporating?	

• Movement:		
o How	are	you	calculating	what	moves	to	make	(e.g.,	choosing	angles	for	turns)?	
o Have	you	calibrated	out	or	otherwise	adjusted	for	any	errors?	How?	
o How	are	you	handling	actuator	noise?	

• Sensing:		
o What	sensor	data	are	you	using?	

	 10	

o Have	you	calibrated	out	or	otherwise	adjusted	for	any	errors?	How?	
o How	are	you	handling	sensor	uncertainty?	

Turnins	for	Milestone	4	

• All	code	written	for	this	milestone,	in	a	form	that	can	be	put	on	our	robot	and	tested,	with	a	
short,	useful	README	text	file	describing	how	to	run	it.	

• A	video	of	your	robot	navigating	a	more	complex	maze.	This	should	be	less	than	five	minutes	
and	doesn’t	need	to	show	the	entire	solving	process.	If	there	is	informative	console	or	audio	
output,	include	it.	

• A	PDF	writeup	with	the	sections	described	above.	
o 479	only:	By	now	this	should	be	a	3-	to	4-page,	single-spaced	document,	including	any	
graphics,	written	in	complete	sentences	(or	a	bulleted	outline	where	noted),	with	
meaningful	section	headers.	

o 679	only:	Continue	working	in	conference	paper	format;	make	sure	your	responses	to	the	
points	above	are	integrated	in	appropriate	sections.	All	references	throughout	should	be	
cited	appropriately	and	appear	in	a	bibliography.		

Milestone 5
Please	note:		this	has	been	split	into	two	deliverables.	The	majority	of	it	is	due	on	the	evening	
of	 May	 14th;	 however,	 the	 “Experimental	 Evaluation”	 section	 of	 the	 writeup	 can	 be	
incomplete	at	this	point	(but	does	not	have	to	be).	The	completed	version	is	due	the	evening	
of	the	17th.	See	Step	2,	below.	

This	milestone	is	the	final	version!	You	will	turn	in	your	final	code	base	for	your	robot,	a	descriptive	
video,	and	a	complete,	research-paper	style	writeup.	Your	goals	are	the	same	as	Milestone	4:	Have	a	
robot	 that	 elegantly	 handles	maze	 navigation	 in	 a	way	 that	 is	 robust	 to	 error,	makes	 full	 use	 of	
sensor	 information,	 has	 a	 good	 strategy	 for	 robotic	maze	 solving,	 and	 incorporates	 what	 you’ve	
learned	in	class.	You	should	not	change	your	core	approach.	

Although	 this	 turnin	 gives	 you	 an	 additional	 week	 and	 a	 half	 to	 do	 big	 hunting	 and	 minor	
improvements,	 your	 basic	 strategy	 should	 be	 nailed	 down	 and	 implemented	 at	 this	 point.	 The	
biggest	block	of	your	time	should	be	spent	on	the	writeup.	

Step	1:	Finish	Robot	Navigation	

The	code	you	turn	in	at	this	stage	is	what	will	be	running	on	your	robot	at	the	final	maze-running	
demo.	There	are	no	specific	additional	guidelines;	at	this	point	you	know	what	you	want	your	robot	
to	do.	However,	here	is	some	advice:	

• Concentrate	on	basics.	Because	this	is	the	final	turnin,	before	experimenting,	make	sure	the	
baseline	is	solid,	because	your	actual	strategy	depends	on	the	core	working.	Can	your	robot:	
o Move	forward	in	a	straight	line?	Backwards?	
o Move	forward	a	fixed	amount	(say,	28cm)?	Backwards?	
o Turn	90°	either	direction?	
o Reliably	tell	how	far	it	is	from	side	walls?		
o From	the	end	of	the	corridor	ahead?	
o Center	itself	between	two	walls?	
o Turn	a	corner?	Without	bumping	anything?	

	 11	

o Notice	an	opening	in	a	side	wall?	
o Navigate	through	an	opening?	

• When	that’s	working	reliably,	practice	working	through	simple	mazes.	
o Can	your	robot	reliably—say,	5	times	in	a	row—navigate	through	the	four	example	mazes	
given,	or	some	similar	variant?	

o If	you	simulate	noise	(for	example,	nudging	the	robot	to	one	side	while	it’s	moving,	or	
briefly	passing	a	hand	in	front	of	the	sensor),	what	happens?	(No,	I	won’t	do	that.	You’re	
just	testing	out	noisy	cases.)	

• Don’t	worry	too	much	about	weird	cases.		
o Most	of	the	mazes	will	be	pretty	simple.	You’re	getting	graded	on	your	strategy,	use	of	
everything	we’ve	learned	in	class,	and	general	robotic	robustness.		

o You	aren’t	getting	graded	on	your	ability	to	figure	out	what	curveballs	we	might	throw	at	
you;	the	more	complex	mazes	are	mostly	for	fun.	

o It’s	not	a	good	use	of	your	time	to	worry	about	it.	It	is	a	good	use	of	your	time	to	be	able	to	
handle	basic	mazes.	

• Practice	good	software	engineering.		
o Even	though	(actually,	especially	when)	it’s	close	to	a	deadline,	it	is	a	really	good	idea	to	
break	what	you	need	to	do	down	into	functions,	write	unit	tests,	and	pay	attention	to	
architecture.	

o Meet	with	your	group	consistently	and	when	you	have	agreed	to.	Use	email.	Make	sure	
everyone	knows	who	is	doing	what	pieces.	This	will	affect	your	grade.	

Step	2:	Write	Up	Work	

The	 final	 iteration	 of	 your	 paper	 is	 a	 project	 report.	 This	will	 probably	 be	 on	 the	 order	 of	 8-10	
pages;	it	shouldn’t	be	shorter	than	6	or	longer	than	12	unless	you	have	a	very	specific	reason.	

• The	majority	of	what	you	write	will	probably	be	in	the	Approach	and	Evaluation	sections.	Very	
broadly,	the	first	contains	the	description	of	strategies,	plans,	architecture,	and	decisions	you	
made,	and	the	second	contains	the	actual	results	of	trying	to	make	it	work	in	the	real	world.	

• Feel	free	to	include	pictures	and	figures	such	as	architecture	diagrams.	In	fact,	please	do—it	
generally	makes	your	paper	a	lot	more	readable	and	informative.	Always	use	meaningful	
captions.	

Your	paper	should	contain	(at	least)	the	following	sections:	

1. Introduction:	Describe	the	project	(very	briefly),	then	a	high	level,	conceptual	overview	of	
your	approach	and	your	experimental	results	(that	is,	how	well	it	worked	out).	This	is	
typically	about	a	page.	

2. Related	work:	This	should	contain	a	short	(1–2	sentence)	description	of	sources	you	
accessed,	including	any	libraries,	github	projects,	our	textbook,	useful	web	pages,	videos	you	
watched,	etc.	Please	note	that	this	is	not	just	a	list—it	is	written	text,	and	reading	it	should	
give	me	an	idea	what	these	sources	are	and	what	they	contributed	to	this	project.	The	actual	
links	or	sources	should	be	cited	in	this	section,	and	formatted	as	references	in	the	
bibliography.	(See	example	below.)	Don’t	forget	to	include	libraries	like	easygopigo.	

3. Approach:	This	is	the	section	where	you	tell	us	all	about	everything	interesting	you	did	and	
all	the	design	choices	you	made,	as	well	as	your	thought	processes	and	other	considerations.	
This	should	build	on	all	the	points	from	Milestone	4.	What	did	you	end	up	doing?	What	
decisions	did	you	make	and	why?	What	other	approaches	did	you	consider,	and	why	did	you	
do	them?	(If	you	tried	them	and	it	didn’t	work	in	practice,	that	goes	in	the	next	section.)		

	 12	

4. Experimental	evaluation/Results:	A	description	of	how	you’re	testing	the	robot	and	what	
happened.	Did	you	build	a	maze?	(Include	pictures!)	What	did	you	have	to	do	to	make	it	work?	
Did	you	calibrate	the	robot?	How?	If	you	elect	to	include	the	final	demos	in	your	writeup,	how	
were	the	mazes	set	up?	
An	explanation	of	what	actually	happened	during	testing.	Did	the	robot	navigate	successfully?	
If	not,	what	happened?	Did	you	try	something	and	have	to	switch	approaches	because	it	didn’t	
work	when	you	tested	it?		
This	is	a	good	place	to	expound	on	the	real-world	difficulties	and	decisions	you	made.	Did	
your	robot	consistently	bump	into	walls?	In	practice,	did	your	strategy	perform	poorly	in	a	
maze	where	all	the	openings	were	on	the	left?	What	went	well?		
NOTE:	If	you	wish,	you	may	turn	in	an	updated	version	of	your	paper	with	a	results	
section	that	talks	about	how	the	robot	did	in	the	actual	maze	demos.	This	is	intended	to	
give	you	the	opportunity	to	describe	your	results	in	the	actual	final	“working”	conditions,	as	
well	as	in	your	own	testbed.		

5. References:	These	should	be	in	a	separate	section	at	the	end.	Any	standard	citation	format	
(APA,	MLA,	or	IEEE)	is	fine;	just	be	consistent.	(679	students	should	use	the	template	format.)	
For	specific	guidance,	see:	http://tiny.cc/ieee-citations	

Example	related	work:	
For	 this	 project,	 we	 explored	 several	 different	 ways	 of	 implementing	 SLAM	 [1].	 We	 initially	
intended	to	use	FuzzySLAM	[2],	which	is	designed	to	handle	mapping	in	a	maze,	but	it	turned	out	
to	be	unsuitable	because	 it	made	our	robot	grow	actual	 fuzz,	which	 interfered	with	the	servos	
(see	 Figure	 3).	 We	 also	 considered	 using	 an	 existing	 particle	 filter-based	 localization	
implementation	 [3],	 but	 decided	 to	 build	 our	 own	 implementation	 of	 mapping	 when	 we	
remembered	the	environment	is	just	a	bunch	of	squares.	

Example	bibliography:	
[1]	Dissanayake,	M.	G.,	Newman,	P.,	Clark,	S.,	Durrant-Whyte,	H.	F.,	&	Csorba,	M.	A	solution	to	

the	simultaneous	localization	and	map	building	(SLAM)	problem.	IEEE	Transactions	on	
Robotics	and	Automation,	17(3),	229-241,	2001.	

[2]	Matuszek,	C.	and	Smith,	T.	FuzzySLAM:	Using	Fuzzy	Logic	on	Completely	Inappropriate	
Problems.	Journal	of	Improbability	Distributions	in	Robotics,	2011.		

[3]	Smith,	J.	J.	J,	Particle	Filters	on	A	Tiny	Robot.	GitHub	repository,	
https://github.com/smithjjj/ros_gopigo3_particles.	[Retrieved	May	1,	2018].	

Turnins	for	Milestone	5	

• Your	final,	complete	code,	in	a	form	that	can	be	put	on	our	robot	and	tested,	with	a	short,	
useful	README	text	file	describing	how	to	run	it.	

• A	video	of	your	robot	navigating	a	more	complex	maze.	This	should	be	less	than	five	minutes	
and	doesn’t	need	to	show	the	entire	solving	process.	If	there	is	informative	console	or	audio	
output,	include	it.	

• A	PDF	writeup	with	the	sections	described	above.	

