
Decision Trees in
AIMA, WEKA,

and SCIKIT-LEARN

14_2_dt_examples

http://archive.ics.uci.edu/ml

•Est. 1987!
•370 data sets

http://archive.ics.uci.edu/ml/datasets/Zoo

http://archive.ics.uci.edu/ml/datasets/Zoo

Zoo training data
1) animal name: string
2) hair: Boolean
3) feathers: Boolean
4) eggs: Boolean
5) milk: Boolean
6) airborne: Boolean
7) aquatic: Boolean
8) predator: Boolean
9) toothed: Boolean
10) backbone: Boolean
11) breathes: Boolean
12) venomous: Boolean
13) fins: Boolean
14) legs: {0,2,4,5,6,8}
15) tail: Boolean
16) domestic: Boolean
17) catsize: Boolean
18) type: {mammal, fish,

bird, shellfish, insect,
reptile, amphibian}

101 Instances

aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal
bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal
calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal
carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish
catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal
cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird
chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish
crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish
…

category
label

Zoo example
> aipython
>>> from learning4e import *
>>> zoo
<DataSet(zoo): 101 examples, 18 attributes>
>>> zdt = DecisionTreeLearner(zoo)
>>> zdt(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0]) #eggs=1
'fish'
>>> zdt(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0]) #eggs=0
‘mammal’

Zoo example

>> zdt
DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0:
DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'reptile'}), 1:
DecisionTree(3, 'eggs', {0: 'mammal', 1: 'fish'})}), 2:
DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4:
DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {0:
'reptile', 1: DecisionTree(8, 'toothed', {0: 'shellfish', 1:
'amphibian'})}), 1: 'mammal'}), 5: 'shellfish', 6:
DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8:
'shellfish'})

Zoo example
>>> zt.display()
Test legs
legs = 0 ==> Test fins

fins = 0 ==> Test toothed
toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = reptile

fins = 1 ==> Test eggs
eggs = 0 ==> RESULT = mammal
eggs = 1 ==> RESULT = fish

legs = 2 ==> Test hair
hair = 0 ==> RESULT = bird
hair = 1 ==> RESULT = mammal

legs = 4 ==> Test hair
hair = 0 ==> Test aquatic

aquatic = 0 ==> RESULT = reptile
aquatic = 1 ==> Test toothed

toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = amphibian

hair = 1 ==> RESULT = mammal
legs = 5 ==> RESULT = shellfish
legs = 6 ==> Test aquatic

aquatic = 0 ==> RESULT = insect
aquatic = 1 ==> RESULT = shellfish

legs = 8 ==> RESULT = shellfish

legs

fins

hair

hair aquaticshellfish

shellfish0

2 4 5 6

8

eggs tooth

mammal

fish

shellfish

reptile

0 1 0 1

1
0

mammal

bird

0

1

aquatic

tooth

shellfish

reptile

0
1

reptile

0

0 1

shellfish

insect
0

1

Zoo example
>>> dt.dt.display()
Test legs
legs = 0 ==> Test fins

fins = 0 ==> Test toothed
toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = reptile

fins = 1 ==> Test milk
milk = 0 ==> RESULT = fish
milk = 1 ==> RESULT = mammal

legs = 2 ==> Test hair
hair = 0 ==> RESULT = bird
hair = 1 ==> RESULT = mammal

legs = 4 ==> Test hair
hair = 0 ==> Test aquatic

aquatic = 0 ==> RESULT = reptile
aquatic = 1 ==> Test toothed

toothed = 0 ==> RESULT = shellfish
toothed = 1 ==> RESULT = amphibian

hair = 1 ==> RESULT = mammal
legs = 5 ==> RESULT = shellfish
legs = 6 ==> Test aquatic

aquatic = 0 ==> RESULT = insect
aquatic = 1 ==> RESULT = shellfish

legs = 8 ==> RESULT = shellfish

After adding the
shark example
to the training
data & retraining

Weka
• Open-source Java machine learning tool
• http://www.cs.waikato.ac.nz/ml/weka/
• Implements many classifiers & ML algorithms
• Uses common data representation format;

easy to try different ML algorithms and
compare results

• Comprehensive set of data pre-processing
tools and evaluation methods

• Three modes of operation: GUI, command
line, Java API

10

http://www.cs.waikato.ac.nz/ml/weka/

% Simplified data for predicting heart disease with just six variables
% Comments begin with a % allowed at the top
@relation heart-disease-simplified
@attribute age numeric
@attribute sex { female, male }
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
@attribute cholesterol numeric
@attribute exercise_induced_angina {no, yes}
@attribute class {present, not_present}

@data
63,male,typ_angina,233,no,not_present
67,male,asympt,286,yes,present
67,male,asympt,229,yes,present
38,female,non_anginal,?,no,not_present
...

Common .arff* data format

age is a numeric attribute

sex is a nominal attribute

Training data

*ARFF = Attribute-Relation File Format

class is target variable

Weka demo

13
https://cs.waikato.ac.nz/ml/weka/

https://cs.waikato.ac.nz/ml/weka/

Install Weka

•Download and install Weka
•cd to your weka directory
•Invoke the GUI interface or call components

from the command line
– You may want to set environment variables

(e.g., CLASSPATH) or aliases (e.g., weka)

https://cs.waikato.ac.nz/ml/weka/

Getting your data ready
•Our class code repo’s ML directory has several

data files for the restaurant example
1. restaurant.csv: original data in simple text format
2. restaurant.arff: data put in Weka’s arff format
3. restaurant_test.arff: more data for test/evaluation
4. restaurant_predict.arff: new data we want predictions

for using a saved model

•#1 is the raw training data we’re given
•We’ll train and save a model with #2
•Test it with #3
•Predict target on new data with #4

https://github.com/UMBC-CMSC-671-F20/code
https://github.com/UMBC-CMSC-671-F20/code/tree/master/ML
https://raw.githubusercontent.com/UMBC-CMSC-671-F20/code/master/ML/restaurant.csv
https://raw.githubusercontent.com/UMBC-CMSC-671-F20/code/master/ML/restaurant.arff
https://raw.githubusercontent.com/UMBC-CMSC-671-F20/code/master/ML/restaurant_test.arff
https://raw.githubusercontent.com/UMBC-CMSC-671-F20/code/master/ML/restaurant_predict.arff

Open Weka app

• cd /Applications/weka

• java -jar weka.jar

• Apps optimized for
different tasks

• Start with Explorer

Explorer Interface

Starts with Data Preprocessing;
open file to load data

Load restaurant.arff training data

We can inspect/remove features

Select: classify > choose > trees > J48

Adjust parameters

Select the testing procedure

See training results

Compare results
HowCrowded = None: No (2.0)
HowCrowded = Some: Yes (4.0)
HowCrowded = Full
| Hungry = Yes
| | IsFridayOrSaturday = Yes
| | | Price = $: Yes (2.0)
| | | Price = $$: Yes (0.0)
| | | Price = $$$: No (1.0)
| | IsFridayOrSaturday = No: No (1.0)
| Hungry = No: No (2.0)

J48 pruned tree: nodes:11;
leaves:7, max depth:4

ID3 tree: nodes:12; leaves:8,
max depth:4

The two decision trees are equally good

scikit-learn
•Popular open source ML and data analysis

tools for Python
•Built on NumPy, SciPy, and matplotlib for

efficiency
•However decision tree tools are a weak area

– E.g., data features must be numeric, so working
with restaurant example requires conversion

– Perhaps because DTs not used for large problems

•We’ll look at using it to learn a DT for the
classic iris flower dataset

https://scikit-learn.org/stable/
https://www.numpy.org/
https://www.scipy.org/
https://matplotlib.org/
https://en.wikipedia.org/wiki/Iris_flower_data_set

50 samples from each of three species of Iris (setosa, virginica,
versicolor) with four data features: length and width of the
sepals and petals in centimeters

Scikit
DT

from sklearn import tree, datasets
import graphviz, pickle
iris = datasets.load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
pickle.dump(clf, open(‘iris.p’, ‘wb’))
tree.export_graphviz(clf, out_file=“iris.pdf”)

http://bit.ly/iris671

http://bit.ly/iris671

Weka vs. scikit-learn vs. …

•Weka: good for experimenting with many ML
algorithms
–Other tools are more efficient & scalable

•Scikit-learn: popular and efficient suite of open-
source machine-learning tools in Python
–Uses NumPy, SciPy, matplotlib for efficiency
–Preloaded into Google’s Colaboratory

•Custom apps for a specific ML algorithm are
often preferred for speed or features

http://scikit-learn.org/stable/
https://colab.research.google.com/notebooks/welcome.ipynb

