
 1/7

UMBC CMSC 471 Midterm Exam 21 March 2016

Write your answers on this exam, which is closed book and consists of five problems, summing to 125
points. You have the entire class period, seventy-five minutes, to work on this exam. Good luck.

1. True/False [10 points]

Circle either T or F in the space before each statement to indicate whether the statement is true or false. If
you think the answer is simultaneously true and false, quit while you are ahead.

T F Alan Turing proposed his famous Turing test as a technique for deciding whether or not a problem
was "Turing computable".
FALSE. The Turing test measures “intelligence” and has no direct relation to computability.

T F A greedy, best-first search algorithm is always complete.
FALSE. Infinite loops can cause it to fail to find a solution

T F A simple breadth-first search always finds a shortest solution if one exists that is of finite length.
TRUE

T F For a search problem, the path returned by uniform cost search may change if we add a positive con-
stant C to every step cost.
TRUE. Given two paths from S to G: S→A→G and S→G where cost(S,A)=1, cost(A,G)=1, and
cost(S,G)=3, he optimal path is through A. Adding two to each arc cost makes the optimal path
S→G. Since uniform cost search finds the optimal path, its path will change.

T F The alpha-beta algorithm is preferred to minimax because it provides a better estimation of which
move is best for a given lookahead distance.
FALSE. Alpha-beta and minimax always return the same values.

T F In a two-player, zero-sum game there is always a winner and a loser.
FALSE. Many such games can result in a draw

T F In a prisoners' dilemma game, each player chooses a dominant strategy, but each could do better if
both chose different strategies.
TRUE.

T F Game theory predicts that players will always have a dominant strategy.
FALSE. Many games do not have a dominant strategy

T F Tit-for-tat is a strategy that cannot be applied in repeated games.
FALSE. Tit-for-tat is a popular strategy in games in with repeated encounters

T F If h1(s) and h2(s) are admissible A* heuristics, then their average, (h1(s) + h2(s))/2 must also be
admissible.
TRUE. Let h(s) be the true distance from s. We know that h1(s) ≤ h(s) and h2(s) ≤ h(s), thus f(s) =
½ h1(s) + ½ h2(s) ≤ 1/2 h(s) + ½ h(s) = h(s)

1 2 3 4 5 total

10 10 35 35 35 125

Name

 2/7

2. Multiple Choice [10 points]

Circle all of the correct answers.

2.1 [2] Which of the following search algorithms finds an optimal solution?

a. Breadth first c. Depth first e. None of the above

b. Hill climbing d. Greedy search

a

2.2 [2] A search algorithm is complete if it…

a. Always finds the optimal solution c. Finds all possible solutions

b. Always finds a solution if there is one d. Never finds a solution

b, c

2.3 [2] Which of these techniques uses randomness to avoiding getting trapped in local maxima?

a. Best first search d. Gradient descent

b. Local beam search e. None of the above

c. Simulated annealing

c

2.4 [2] Which of the following is a problem that occurs in hill climbing search?

a. Cliffs d. “Slippery slopes” g. None of the above

b. Ridges e. Local maxima and minima

c. Valleys f. Cycles in the graph

b, e

2.5 [2] A greedy search uses a heuristic function to expand the node that

a. Appears to be closest to the goal d. Is the leftmost node in the search tree

b. Is closest to a goal e. None of the above

c. Is closest to the start state

a

 3/7

3. Search I [35 points]

Consider the search space with this
graph, where S is the start state and G
is the goal. Assume a heuristic is
available for the A* algorithm that
has the following values:

{S:4, A:3, B:2, C:100, G:0}

For questions a-e specify the path as a
sequence of nodes starting at S and end-
ing at G that each algorithm returns.
Assume the successor functions
work so that nodes are explored in
alphabetical order whenever possible.

(a) [5] Breadth-first search

S → G

(b) [5] Depth-first search

S → A → G

(c) [5] Uniform-cost search

S → B → G

(d) [5] A* search

S → B → G

(e) [5] Greedy search

S → G

(f) [5] Name a node that uniform-cost search will expand, but A* will not.

C

(g) [5] Judging just from the heuristic function for these nodes, is it an admissible heuristic?

Yes

 4/7

4. Minimax and Expectimax [35]

4.1 [6] Consider a zero-sum game with two
players. Each leaf is labeled with the payoff
player 1 receives. It is player 1’s turn to
move. Assume both play optimally at every
ply (i.e. player 1 seeks to maximize payoff
while Player 2 seeks to minimize it). Circle
player 1’s best next move on the graph, and
show the minimax values for each node in
the tree.

4.2 [6] Consider this game tree. Player 1
moves first, and attempts to maximize the
expected payoff. Player 2 moves second,
and attempts to minimize the expected pay-
off. Expand nodes left to right. Cross out
both internal and leaf nodes that would be
pruned by the alpha-beta algorithm

4.3 [6] Assume that player 2 chooses an ac-
tion uniformly at random every turn and that
player 1 knows this. Player 1 still seeks to
maximize her payoff. Circle player 1’s opti-
mal next move, and give her expected pay-
off. Show the expected value at each node in
the tree.

5 10

5

1
15

1

5

✗ ✗ ✗

✗

5 10
1

15

8
7.5

8

 5/7

4.4 [6] Now consider a modified version of the
game tree, where the leftmost leaf node has an
unknown payoff X. Player 1 moves first, and at-
tempts to maximize the value of the game.

4.5 [3] Assume player 2 is a minimizing agent (and Player 1 knows this). For what values of X
does player 1 choose the left action?

X > 1 or X ≥ 1, depending on how an implementation breaks ties.

4.6 [3] Assume Player 2 chooses actions at random (and Player 1 knows this). For what values
of X does Player 1 choose the left action?

X > 6 or X ≥ 6, depending on how an implementation breaks ties.

4.7 [5] For what values of X is the minimax value backed up (i.e., when player2 chooses ration-
ally) to the the tree’s root worth more than the expectimax value at the root (i.e., when player
2 chooses randomly)?

The tree's minimax value can never exceed it's expectimax value. For X=10, the two cases are equal. For
the rational/minimax case, the value at the root is max(min(x,10), 1), so it can never exceed 10. For the
expectimax/random case it is max((x+10)/2, 8).

 6/7

5. Constraint Satisfaction [35]

Consider the crossword puzzle shown on the right.
Suppose we have the following words in our diction-
ary: ant, ape, big, bus, car, has, bard, book, buys,
hold, lane, year, rank, browns, ginger, symbol, syntax.
The goal is to fill the puzzle with words from the dic-
tionary.

This problem asks you to set the problem up for solu-
tion as a constraint satisfaction by specifying the vari-
ables, their domains and constraints.

5.1 [10] Describe a set of variable for this problem
and give the initial domain for each. If you need more
table rows, use the back of this sheet.

var description Initial domain

V1 1 across 3-letter words: ant, ape, big, bus, car, has

V2 1 down 4 letter words: bard, book, buys, hold, lane, year, ran

V3 2 down 6 letter words: browns, ginger, symbol, syntax

V4 3 across 4 letter words: bard, book, buys, hold, lane, year, ran

V5 4 across 3-letter words: ant, ape, big, bus, car, has

V6

V7

V8

V9

V10

 7/7

5.2 [10] Draw a constraint graph for the problem, e.g., a graph with variables as nodes and an edge be-
tween variables when they have a constraint between their values.

5.3 [5] Describe how you could represent a variable value in Python, e.g., as an integer, float, charac-
ter, string, tuple, list, dictionary, set, class instance, etc.

Values can be simple strings representing the dictionary words, e.g., v1=”ape”

5.3 [10] For this representation describe each of the constraints. Feel free to use Python to describe it
or a simple sentence. If you need more table rows, use the back of this sheet.

Var1 Var2 Constraint

v1 v2 v1[0] == v2[0] # first char of 1 across must equal first char of 1 down

v1 v3 v1[-1] == v3[0] # last char of 1 across must equal first char of 2 down

v1 v4 v1[2] == v4[0] # third char in 1 down must equal first char 3 across

v3 V5 v3[4] == v5[0] # fifth char of 2 down must equal first char of 4 across

V3 V4 v3[2] == v4[2] # third chars of 2 down and 3 across must equal

