
 12/10/2015 1/7

Name:__

UMBC CMSC471/671 Final Exam

December 14, 2006

Please write all of your answers on this exam. The exam is closed book and consists of N problems
which add up to M points. You have the two hours to work on this exam. Good luck.

0. Warm Up Exercise (0)

The department just purchased a FixBot maintenance robot (model 2.0) and plans to use it to maintain all
the department’s robots who do not maintain themselves. Is there a problem with this plan?

This is a direct variation on the famous barber paradox.

1. Uninformed search (10)

Briefly discuss the advantages and disadvantages of depth and breadth first search. What sort of problem
is each appropriate for?

DFS can find a solution quickly and it can be done efficiently using a tack, requiring little memory. But,
it may not find the best solution or even a very good one and it can fail to find a solution at all of the
search space is infinite.

BFS will always find a solution if one exists and the first solution it finds will be the best one. However,
it requires a lot of memory and if the search pace is large it can take a long time to find a solution.

2. Heuristic search (10)

Briefly describe all of the conditions that must hold in order for an instance of graph search (i.e.,
algorithm A) to be an instance of A* search. Include any relevant constraints on the size and structure of
the graph, the costs associated with the arcs, the number of goal states, and the heuristic function
employed.

All of the arc cost must be positive. The heuristic function must never overestimate the true cost to reach
the nearest goal.

1 2 3 4 5 6 7 8 9 total
10 10 40 30 20 10 30 25 30 205

 12/10/2015 2/7

3. True/False (40 points)
Circle either T or an F in the space before each statement to indicate whether the statement is true or false.
If you think the answer is simultaneously true and false, quit while you are ahead. There is no penalty for
incorrect answers (but then, there are no points for incorrect answers either).

 T F Every complete inference procedure is also sound. true

 T F Every sound inference procedure is also complete. false

 T F An incomplete inference procedure can produce an incorrect answer. false

 T F An unsound inference procedure can produce an incorrect answer. true

 T F The scope of a variable in Prolog is just the clause it is in. true

T F Prolog programs are sound but not complete. false

T F Hill climbing search algorithms only work for search spaces that are two-dimensional or have

solution-preserving projections onto two-dimensions. false

T F Iterative deepening is essentially a technique to combine the best features of breadth-first and

depth-first search. true

 T F Overfitting can occur in machine learning when the data contains many irrelevant attributes. true

 T F The decision tree learning algorithm covered in class finds an optimal decision tree, i.e., one that

minimizes the number of questions needed to classify a case. false

 T F Ockham’s razor is a heuristic that says to prefer the simplest consistent explanation . true

 T F Decision tree learning can not be used if the data is noisy. false

T F In a proper Bayesian network, a node is always conditionally independent of its non-descendants

given its parents. true

T F Information gain is used to determine the network structure in a Bayesian Network. false

 T F Random variables A and B are independent if p(A^B) = p(A|B)*p(B). false

T F If two variables are independent, then they are always conditionally independent given an

arbitrary third variable. false

T F In searching for a plan, a partial order planner searches though a space formed by possible

situations. false

T F A partial order planner can either search forward from an initial state to a goal, backward from a

goal state to the initial state, or in both directions toward the middle. false

 T F The situation calculus is an approach to reasoning about changes in random variables using first

order logic. false

T F Resolution is refutation-complete, which means that if a set of sentences is unsatisfiable, then a

contradiction can always be derived in a finite amount of time. true

 12/10/2015 3/7

4. English to logic (30)

Translate the following statements into a single sentence in first order logic, choosing appropriate
predicates and functions.

(a) Good food is not cheap and cheap food is not good.

"x [food(x) ^ good(x) ® ~cheap(x)]

This reduces to a simple implication that I identical in meaning to [food(x) ^ cheap(x) ®
~good(x)]

(b) If a computer beats Kramnik, then that computer beats every person.

"c computer(c) ^ beats(c,kramnik) ® ("x person(x) ® beats(c,x))

(c) Every person is either good or bad but not both.

"x person(x) ® (good(x) ^ not (bad(x)) v (not(good(x)) ^ bad (x))

Of course there are other ways to do this, including the following:

"x person(x) ® [(good(x) v bad (x)) ^ (good(x) ó not(bad(x)))]

Now rewrite each of these in clausal normal form, i.e. as a set of sentences without quantifiers in which
each sentence is a disjunction of atomic literals. Recall that an atomic literal is either a predicate (i.e,
loves(john,X)) or the negation of a predicate (i.e., not(loves(john, father(mary)))).

(a) Good food is not cheap and cheap food is not good.

~food(x) v ~good(x) v ~cheap(x)

(b) If a computer can beat Kramnik in chess, then a computer can beat anyone in chess.

~computer(c) v ~beats(c,kramnik) v ~person(x) v beats(c,x)

(c) Every person is either good or bad but not both.

~person(x) v good(x) v bad(x)
~person(x) v ~good(x) v ~bad(x)

 12/10/2015 4/7

5. Logic to English (20)

(a) Which of the following, if any, are correct translations of “No two adjacent countries have the same
color”?
	

i. ∀x ∀y ~Country(x) Ú ~Country(y) Ú ~Adjacent(x,y) Ú ~(Color(x) = Color(y))
ii. ∀x ∀y (Country(x) ^ Country(y) ^ Adjacent(x,y) ^ ~(x = y))) ® ~(Color(x) = Color(y))
iii. ∀x ∀y Country(x) ^ Country(y) ^ Adjacent(x,y) ^ ~ (Color(x) = Color(y))
iv. ∀x ∀y (Country(x) ^ Country(y) ^ Adjacent(x,y)) ® Color(x ≠ y)

(i) and (ii) are correct. Adding a constraint that x≠y is not necessary, since a country can not be
adjacent to itself. (iii) is not correct. (iv) is malformed due to Color(x ≠ y).

(b) Which of the following are semantically and syntactically correct translations of "No dog bites a child
of its owner" ?
	

i. ∀x Dog(x) => ~Bites(x,Child(Owner(x)))
ii. ~$x ~$y Dog(x) ^ Child(y,Owner(x)) ^ Bites(x, y)
iii. ∀x Dog(x) => (∀y Child(y,Owner(x)) => ~Bites(x, y))
iv. ~$x Dog(x) => ($y Child(y,Owner(x)) ^ Bites(x, y))
	

(ii) and (iii) are ok. (i) is bad because it uses child as a function, rather than a relation. (iv) says that it’s
not the case that every dog bites some child of its owner.

6. Failure as negation (10)

(a) Describe the relationship, if any, between Prolog's failure as negation and non-monotonic reasoning.

Both involve treating the inability to prove a goal as a condition of a proof. For example, we might
encode a default rule that all birds fly as: Fly(X) :- bird(X), not(flightless(X).

(b) Write a Prolog rule encoding the knowledge that “All birds fly, except for penguins, kiwis and dead

birds” choosing appropriate names for your predicates.

fly(X) :- bird(X), not(flightless(X).
flightless(X) :- penguin(x).
flightless(X) :- kiwi(x).
flightless(X) :- dead(x).

 12/10/2015 5/7

7. Decision trees (30)

You are constructing a decision tree and are deciding which attribute is best to
ask about first using the information gain metric. You are given a set of 128
examples, with 64 positively labeled and 64 negatively labeled. There are
three attributes, HomeOwner, InDebt, and Rich. For 64 examples,
HomeOwner is true with 1/4 negative and 3/4 positive. For 96 examples,
InDebt is true with half positive and half negative. For 32 examples, Rich is
true with 3/4 positive and 1/4 negative. Recall that the entropy of a
distribution P with probabilities (p1...pn) is defined as -Σ pi *ln(pi).
Information gain is the difference in entropy before asking the question and
the (weighted) entropy after.

(a) fill out the tables to the right to help you with your computations.

(b) What’s the entropy of the initial data?

entropy = I(1/2,1/2) = - (0.5*-1 + 0.5*-1) = 1

(b) What is the information gain of splitting on the HomeOwner attribute as
the root node?

The entropy of the result is

0.5 * I(1/4,3/4) + 0.5 * I(1/4,3/4) = I(1/4,3/4) = 2*.25 + .415*.75 =
0.81125

So the information gain is 0.18875

(c) What is the information gain of splitting on the InDebt attribute as the root node?

The entropy of the result is

.75 * I(1/2,1/2) + .25*I(1/2,1/2) = I(1/2,1/2) = 1

So the information gain is 0.0

(d) What is the information gain of splitting on the Rich attribute as the root node?

The entropy of the result is

.25*I(1/4,3/4) + .75*I(5/12, 7/12) = .25*0.81125 + .75*(.417*1.263 + .583*.778)
= .203 + .739 = .942

So the information gain is ..058

(e) Which attribute do you split on?

HomeOwner

Note

ln(1/4) = -2.0
ln(5/12) = -1.263
ln(1/2) = -1.0
ln(7/12) = -.778
ln(3/4) = -0.415
5/12 = 0.417
7/12 = 0.583

ALL neg pos
 64 64

HO neg pos
true 16 48
false

ID neg pos
true 48 48
false

RICH neg pos
true 8 24
false

 12/10/2015 6/7

8. Bayesian networks (25)

You are designing a troubleshooting advisor for PCs. Let CF be a boolean random variable representing
whether the computer fails (CF=true) or not. Assume there are two possible causes of failure: Electricity-
Failure and Malfunction-of-the-Computer represented using the Boolean random variables EF and MC,
respectively. The table below lists some of the common formulae. Assume the following probabilities

P(EF) = 0.1
P(MC) = 0.2
P(CF | ~EF ^ ~MC) = 0.0
P(CF | ~EF ^ MC) = 0.5
P(CF | EF ^ ~MC) = 1.0
P(CF | EF ^ MC) = 1.0

(a) Are EF and MC independent?

yes

(b) Draw the Bayesian Network for this problem.

EF and MC are parents of CF

(b) Compute P(CF ^ ~EF ^ MC). Hint: use the chain rule.

 P(CF ^ ~EF ^ MC) = P(CF | MC ^ ~EF) P(MC | EF) P(~EF)
 = P(CF | MC ^ ~EF) P(MC) P(~EF)
 = (0.5)(0.2)(0.9) = 0. 09

(c) Compute P(MC | EF)

Since MC and EF are independent, P(MC|EF) = P(MC) = 0.2

(d) Compute P(EF | CF)

P(EF|CF) = P(EF ^ ~MC|CF) + P(EF ^ MC | CF)
 = [P(CF ^ EF ^ ~MC)/P(CF)] + [P(CF ^ EF ^ MC)/P(CF)]
 = (0.08+0.02)/0.19
 = 0.5263

rule not conditioned conditioned on C
basic P(A,B) = P(A|B)P(B) P(A,B|C) = P(A|B,C)P(B|C)
Bayes P(B|A)P(A) = P(A|B)P(B) P(B|A,C)P(A|C) =

P(A|B,C)P(B|C
independence A&B are independent iff

P(A|B) = P(A)
A&B cond. Indep. given C
 iff P(A|B,C) = P(A|C)

chain rule P(A,B,C) =
P(A)P(B|A)P(C|A,B)

axiom P(A) + P(~A) = 1 P(A|C) + P(~A|C) = 1
marginalization P(A) = SUMb P(A,B) P(A|C) = SUMb (P(A,B|C)

 12/10/2015 7/7

9. Planning (30 points)

In the minimal block world domain used in HW7 and in class, there are just five predicatesdescribing
states (ontable/1, holding/1, handempty, on/2, clear/1) and four operators (pickup, putdown, stack,
unstack). Operators are defined in terms of five elements: description, preconditions, adds, deletes, and
constraints, as in this example:

stack operator
Description: stack(X,Y)
Preconditions: [holding(X), clear(Y)]
Adds: [on(X,Y), clear(X)]
Deletes: [holding(X), clear(Y)]
Constraints: [not(Y=table)]

Define the following strips operators in this format.

(a) The clone operation allows the robot to create a copy of an existing object that it is holding. The

newly created object will be on the table and have nothing on it. If the robot clones an object named
foo, then the new copy will be named copyOf(foo).

clone operator

Description: clone(Obj)
Preconditions: [holding(Obj)]
Adds: [ontable(copyOf(Obj), clear(CopyOf(Obj))]
Deletes: []
Constraints: []

(b) The destroy operation allows the robot to destroy an object that it is holding. The object is removed

from the world description.

destroy operator
Description: destroy(Obj)
Preconditions: [holding(Obj)]
Adds: [handempty]
Deletes: [holding(obj)]
Constraints:

(c) The swap operation can reverse the order of the top two objects in a stack. That is, if a is on b, and b

is on c, and nothing is on a, then after the swap operation, b will be on a and a will be on c and
nothing will be on b. In order initiate a swap operation, the robot’s hand has to be empty. Nothing
else in the state will have changed.

 swap operator

Description: swap(Obj1,Obj2)
Preconditions: [on(Obj1,Obj2), clear(Obj1), handempty]
Adds: [on(Obj2,Obj1), clear(Obj2)]
Deletes: [on(Obj1,Obj2), clear(Obj1)]
Constraints: []

