Bayesian Learning

Chapter 20.1-20.4

Some material adapted from lecture notes by Lise Getoor and Ron Parr

Simple case: Naïve Bayes

- •Use Bayesian modeling
- Make the simplest possible independence assumption:
 - Each attribute is independent of the values of the other attributes, given the class variable
 - In our restaurant domain: Cuisine is independent of Patrons, *given* a decision to stay (or not)

Bayesian Formulation

- $p(C | F_1, ..., F_n) = p(C) p(F_1, ..., F_n | C) / P(F_1, ..., F_n)$ = $\alpha p(C) p(F_1, ..., F_n | C)$
- Assume each feature F_i is conditionally independent of others given the class C. Then:
 p(C | F₁, ..., F_n) = α p(C) Π_i p(F_i | C)
- Estimate each of these conditional probabilities from the observed counts in the training data:
 p(F_i | C) = N(F_i ∧ C) / N(C)
 - One subtlety of using the algorithm in practice: when your estimated probabilities are zero, ugly things happen
 - Fix: Add one to every count (aka <u>Laplace smoothing</u> they have a different name for *everything*!)

Naive Bayes: Example

p(Wait | Cuisine, Patrons, Rainy?) =

= α • p(Wait) • p(Cuisine | Wait) • p(Patrons | Wait) • p(Rainy? | Wait)

= p(Wait) • p(Cuisine|Wait) • p(Patrons|Wait) • p(Rainy?|Wait)

p(Cuisine) • p(Patrons) • p(Rainy?)

We can estimate all of the parameters (p(F) and p(C) just by counting from the training examples

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms—it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)—for that, we need Bayes nets!

Learning Bayesian networks

- Given training set
- Find B that best matches **D**
 - model selection
 - parameter estimation

 $D = \{x[1], ..., x[M]\}$

Data D

Learning Bayesian Networks

- •Describe a BN by specifying its (1) structure and (2) conditional probability tables (CPTs)
- •Both can be learned from data, but
 - –learning structure much harder than learning parameters
 - learning when some nodes are hidden, or with missing data harder still

•Four cases:

Structure	Observability	Method
Known	Full	Maximum Likelihood Estimation
Known	Partial	EM (or gradient ascent)
Unknown	Full	Search through model space
Unknown	Partial	EM + search through model space

Parameter estimation

- Assume known structure
- Goal: estimate BN parameters θ
 - entries in local probability models, P(X | Parents(X))
- A parameterization θ is good if it is likely to generate the observed data:

$$L(\theta: D) = P(D | \theta) = \prod_{m} P(x[m] | \theta)$$

i.i.d. samples

Maximum Likelihood Estimation (MLE) Principle:
 Choose θ* so as to maximize L

Parameter estimation II

- The likelihood **decomposes** according to the structure of the network
 - \rightarrow we get a separate estimation task for each parameter
- The MLE (maximum likelihood estimate) solution:
 - for each value x of a node X
 - and each instantiation *u* of *Parents(X)*

$$\theta^*_{x|u} = \frac{N(x, u)}{N(u)} \sum_{\text{sufficient statistics}}^{\text{sufficient statistics}}$$

- Just need to collect the counts for every combination of parents and children observed in the data
- MLE is equivalent to an assumption of a uniform prior over parameter values

Model selection

Goal: Select the best network structure, given the data **Input:**

- Training data
- Scoring function

Output:

- A network that maximizes the score

Structure selection: Scoring

- Bayesian: prior over parameters and structure
 - get balance between model complexity and fit to data as a byproduct

Marginal likelihood

- Score (G:D) = log P(G|D) α log [P(D|G) P(G)]
- Marginal likelihood just comes from our parameter estimates
- Prior on structure can be any measure we want; typically a function of the network complexity

Same key property: Decomposability

Score(structure) = Σ_i Score(family of X_i)

Heuristic search

Variations on a theme

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!