
Uninformed	
Search	
Chapter	3	

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Today’s	topics	
•  Goal-based	agents	
•  Represen4ng	states	and	operators	
•  Example	problems	
•  Generic	state-space	search	algorithm	
•  Specific	algorithms	
– Breadth-first	search	
– Depth-first	search	
– Uniform	cost	search	
– Depth-first	itera4ve	deepening	

•  Example	problems	revisited	

Big	Idea	
Allen	Newell	and	Herb	Simon	developed	
the	problem	space	principle	as	an	AI	
approach	in	the	late	60s/early	70s	
	

"The	ra4onal	ac4vity	in	which	people	engage	to	solve	a	
problem	can	be	described	in	terms	of	(1)	a	set	of	states	
of	knowledge,	(2)	operators	for	changing	one	state	into	
another,	(3)	constraints	on	applying	operators	and	(4)	
control	knowledge	for	deciding	which	operator	to	
apply	next."	

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972.

BTW	
•  Herb	Simon	was	a	polymath	who	
contributed	to	economics,	cogni4ve	
science,	management,	computer	science	and	
many	other	fields		

•  He	was	awarded	a	Nobel	Prize	in	1978	“for	his	
pioneering	research	into	the	decision-making	
process	within	economic	organiza4ons”	

•  He	is	the	only	computer	scien4st	to	have	won	
a	Nobel		Prize	

Example:	8-Puzzle	
Given	an	ini4al	configura4on	of	8	numbered	
4les	on	a	3x3	board,	move	the	4les	in	such	a	
way	so	as	to	produce	a	desired	goal	
configura4on	of	the	4les.		
	

Simpler:	3-Puzzle	

3	
2	 1	

1	 2	
3	

Building	goal-based	agents	
We	need	to	answer	the	following	ques4ons:		
– How	do	we	represent	the	state	of	the	“world”?	
– What	is	the	goal	to	be	achieved	and	how	can	re	
recognize	it	

– What	are	the	acDons?	
– What	relevant	informa4on	should	be	encoded	to	
describe	the	state	and	available	transi4ons,	and	
solve	the	problem?		

Initial
state

Goal
stateActions

What	is	the	goal	to	be	achieved?	
•  Can	describe	a	situa4on	we	want	to	achieve,	
a	set	of	proper4es	that	we	want	to	hold,	etc.		

•  Requires	defining	a	goal	test,	so	we	know	
what	it	means	to	have	achieved/sa4sfied	goal	

•  A	hard	ques4on,	rarely	tackled	in	AI;	usually	
assume	system	designer	or	user	specifies	goal	

•  Psychologists	and	mo4va4onal	speakers	
stress	importance	of	establishing	clear	goals	
as	a	first	step	towards	solving	a	problem	

•  What	are	your	goals???	

What	are	the	acDons?	
• Characterize	primiDve	acDons	for	making	
changes	in	the	world	to	achieve	a	goal	
• DeterminisDc	world:	no	uncertainty	in	an	
ac4on’s	effects	
• Given	ac4on	and	descrip4on	of	current	
world	state,	ac4on	completely	specifies		
– Whether	ac4on	can	be	applied	to	the	current	
world	(i.e.,	is	it	applicable	and	legal?)	and		

– What	state	results	acer	ac4on	is	performed	in	
the	current	world	(i.e.,	no	need		for	history	
informa4on	to	compute		the	next	state)	

RepresenDng	acDons	
•  Ac4ons	can	be	considered	as	discrete	events	
that	occur	at	an	instant	of	Dme,	e.g.:	
If	“In	class”	and	perform	ac4on	“go	home,” then	next	state	is	
“at	home.” There’s	no	4me	where	you’re	neither	in	class	nor	
at	home	(i.e.,	in	the	state	of	“going	home”)	

•  Number	of	ac4ons/operators	depends	on	the	
representaDon	used	in	describing	a	state	
– 8-puzzle:	specify	4	possible	moves	for	each	of	the	8	
4les,	resul4ng	in	a	total	of	4*8=32	operators	
– Or,	we	could	specify	four	moves	for	“blank”	square	
and	we	only	need	4	operators	

•  RepresentaDonal	shiO	can	simplify	a	problem!	

RepresenDng	states	
•  What	informa4on	is	necessary	to	describe	
all	relevant	aspects	to	solving	the	goal?		

•  The	size	of	a	problem	is	usually	described	
in	terms	of	the	possible	number	of	states	
–  Tic-Tac-Toe	has	about	39	states.		
–  Checkers	has	about	1040	states.		
–  Rubik’s	Cube	has	about	1019	states.		
–  Chess	has	about	10120	states	in	a	typical	game.	
–  Theorem	provers	may	deal	with	an	infinite	space	

•  State	space	size	≈	solu4on	difficulty	

Closed	World	AssumpDon	

•  We	will	generally	use	the	Closed	World		
AssumpDon	

•  All	necessary	informa4on	about	problem	
domain	is	available	in	each	percept	so	each	
state	is	a	complete	descrip4on	of	the	world	

•  I.e.,	no	incomplete	informa4on	at	any	point	
in	4me	

Some	example	problems	

•  Toy	problems	and	micro-worlds	
– 8-Puzzle	
– Missionaries	and	Cannibals	
– Cryptarithme4c	
– Remove	5	S4cks	
– Water	Jug	Problem	

•  Real-world	problems	

8-Puzzle	
Given	an	ini4al	configura4on	of	8	numbered	4les	on	
a	3x3	board,	move	the	4les	in	such	a	way	so	as	to	
produce	a	desired	goal	configura4on	of	the	4les.		
	

What	are	the	states,	goal	test,	ac5ons?	

8	puzzle	

•  State:		3x3	array	of	the	4les	on	the	board	
•  Operators:	Move	blank	square	Lec,	Right,	Up	
or	Down	
More	efficient	operator	encoding	than	one	
with	4	possible	moves	for	each	of	8	dis4nct	
4les	

•  IniDal	State:	A	given	board	configura4on		
•  Goal:	A	given	board	configura4on	

15	puzzle	
• Popularized,	but	not	
invented	by,	Sam	Loyd	
• In	late	1800s	he	offered	
$1000	to	all	who	could	
find	a	solu4on	
• He	sold	many	puzzles	
• The	states	form	two	
disjoint	spaces	
• There	was	no	path	to	
the	solu4on	from	his	
ini4al	state!	

The	8-Queens	Puzzle		

Place	eight	queens	
on	a	chessboard	
such	that	no	queen	
anacks	any	other	
	
	

What	are	the	states,	goal	test,	ac5ons?	

Missionaries	and	Cannibals	
There	are	3	missionaries,	3	canni-
bals,	and	1	boat	that	can	carry	up	to	
two	people	on	one	side	of	a	river	
–  Goal:	Move	all	the	missionaries	and	
cannibals	across	the	river	

–  Constraint:	Missionaries	can’t	be	out-
numbered	by	cannibals	on	either	side	of	
river,	or	else	the	missionaries	are	killed	

–  State:	configura4on	of	missionaries	and	
cannibals	and	boat	on	each	side	of	river		

–  Operators:	Move	boat	containing	some	
set	of	occupants	across	the	river	(in	
either	direc4on)	to	the	other	side	

HW2:	What	are	the	states,	goal	test,	ac5ons?	

Missionaries	and	Cannibals	SoluDon	

 Near side Far side
0 Initial setup: MMMCCC B -
1 Two cannibals cross over: MMMC B CC
2 One comes back: MMMCC B C
3 Two cannibals go over again: MMM B CCC
4 One comes back: MMMC B CC
5 Two missionaries cross: MC B MMCC
6 A missionary & cannibal return: MMCC B MC
7 Two missionaries cross again: CC B MMMC
8 A cannibal returns: CCC B MMM
9 Two cannibals cross: C B MMMCC
10 One returns: CC B MMMC
11 And brings over the third: - B MMMCCC

CryptarithmeDc	
•  Find	an	assignment	of	digits	(0..9)	to	leners	so	that	
a	given	arithme4c	expression	is	true.		Examples:	
SEND	+	MORE	=	MONEY	and	

 FORTY Solution: 29786
+ TEN 850

+ TEN 850
 ----- -----
 SIXTY 31486
F=2, O=9, R=7, etc.	

•  The	solu4on	is	NOT	a	sequence	of	ac4ons	that	
transforms	the	ini4al	state	into	the	goal	state	
•  Solu4on	is	a	node	with	an	assignment	of	digits	to	
each	of	the	dis4nct	leners	in	the	given	problem	

What	are	the	states,	goal	test,	ac5ons?	

Remove	5	SDcks	

Given	this	configura4on	of	
s4cks,	remove	exactly	five	
s4cks	so	that	the	remaining	
ones	form	exactly	three	
squares	

Other tasks:
• Remove 4 sticks and leave 4 squares
• Remove 3 sticks and leave 4 squares
• Remove 4 sticks and leave 3 squares

Water	Jug	Problem	
Given	full	5	gallon	jug	
and	an	empty	2	gallon	
jug,	goal	is	to	fill	the	2	
gallon	jug	with	exactly	
one	gallon	
– State	=	(x,y),	where	x	is	
water	in	the	5G	jug	
and	y	is	water	in	the	
2G	gallon	jug		
– Ini4al	State	=	(5,0)		
– Goal	State	=	(*,1),	
where	*	means	any	
amount		

Name Cond. Transition Effect

Empty5 (x,y)→(0,y) Empty 5G
jug

Empty2 (x,y)→(x,0)
Empty 2G
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2G into
5G

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5G into
2G

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5G into 2G

Operator table

Some	more	real-world	problems	
•  Route	finding	
•  Touring	(traveling	salesman)	
•  Logis4cs	
•  VLSI	layout	
•  Robot	naviga4on	
•  Theorem	proving	
•  Learning	

Knowledge	representaDon	issues	
• What’s	in	a	state?		
– Is	boat	color	relevant	to	solving	the	M&C	problem?	Is	sunspot	ac4vity	
relevant	to	predic4ng	the	stock	market?	This	a	hard	problem	that’s	usually	
lec	to	a	person.	

•  The	right	level	of	abstracDon	to	describe	the	world	
– Too	fine-grained	and	we’ll	“miss	the	forest	for	the	trees.”	Too	coarse-
grained	and	we’ll	miss	cri4cal	details	for	solving	the	problem.	

• Number	of	states	depends	on	the	representa4on	and	
abstrac4on	level.	E.g.,	for	Remove-5-S4cks		
– Represent	individual	s4cks,	there	are	17-choose-5	possible	ways	of	
removing	5	s4cks	
– Represent	the	“squares”	defined	by	4	s4cks,	there	are	6	squares	ini4ally	
and	we	must	remove	3	squares,	so	only	6-choose-3	ways	of	removing	3	
squares	

Formalizing	search	in	a	state	space	
• A	state	space	is	a	graph	(V,	E)	where	V	is	a	
set	of	nodes	and	E	is	a	set	of	arcs,	and	each	
arc	is	directed	from	a	node	to	another	node	
• Nodes	are	data	structures	with	a	state	des-
crip4on	and	other	info,	e.g.,	node’s	parent,	
name	of	operator	that	generated	it	from	
parent,	etc.	
• Arcs	are	instances	of	operators.	When	the	
operator	is	applied	to	the	state	at	its	source	
node,	then	resul4ng	state	is	arc’s	
des4na4on	node	

Formalizing	search	in	a	state	space	
• Each	arc	has	fixed,	posi4ve	cost	associated	
with	it	corresponding	to	the	operator	cost	
• Each	node	has	a	set	of	successor	nodes	
corresponding	to	all	of	legal	ac4ons	that	can	
be	applied	at	node’s	state	
–  Expanding	a	node	=	genera4ng	its	successor	nodes	and	
adding	them	and	their	associated	arcs	to	the	graph	

• One	or	more	nodes	are	marked	as	start	nodes	
• A	goal	test	predicate	is	applied	to	a	state	to	
determine	if	its	associated	node	is	a	goal	node	

Example:	Water	Jug	Problem	
Given	full	5	gallon	jug	
and	an	empty	2	gallon	
jug,	goal	is	to	fill	the	2	
gallon	jug	with	exactly	
one	gallon	
– State	=	(x,y),	where	x	is	
water	in	the	5G	jug	
and	y	is	water	in	the	
2G	gallon	jug		
– Ini4al	State	=	(5,0)		
– Goal	State	=	(*,1),	
where	*	means	any	
amount		

Name Cond. Transition Effect

Empty5 (x,y)→(0,y) Empty 5G
jug

Empty2 (x,y)→(x,0)
Empty 2G
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2G into
5G

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5G into
2G

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5G into 2G

Operator table

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty2

Empty5

2to5

5to2

5to2part

Water	jug	state	space	

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Water jug solution

Class	Exercise	
•  Represen4ng	a	2x2	Sudoku	puzzle	as	a	
search	space	

•  Fill	in	the	grid	so	that	every	row,	every	
column,	and	every	2x2	box	contains	the	
digits	1	through	4.	
– What	are	the	states?	
– What	are	the	operators?	
– What	are	the	constraints	
(on	operator	applica4on)?	
– What	is	the	descrip4on	
of	the	goal	state?	

3

1

3

2

Formalizing	search	(3)	
•  SoluDon:	sequence	of	ac4ons	associated	with	
a	path	from	a	start	node	to	a	goal	node	

•  SoluDon	cost:	sum	of	the	arc	costs	on	the	
solu4on	path	
– If	all	arcs	have	same	(unit)	cost,	then	
solu4on	cost	is	just	the	length	of	solu4on	
(number	of	steps	/	state	transi4ons)	

Formalizing	search	(4)	
•  State-space	search:	searching	through	state	space	for	
solu4on	by	making	explicit	a	sufficient	por4on	of	an	
implicit	state-space	graph	to	find	a	goal	node	
–  Can’t	materializing	whole	space	for	large	problems		
–  Ini4ally	V={S},	where	S	is	the	start	node,	E={}	
–  On	expanding	S,	its	successor	nodes	are	generated	and	
added	to	V	and	associated	arcs	added	to	E	

–  Process	con4nues	un4l	a	goal	node	is	found	
• Nodes	represent	a	par5al	solu5on	path	(+	cost	of	
par4al	solu4on	path)	from	S	to	the	node		
–  From	a	node	there	may	be	many	possible	paths	(and	thus	
solu4ons)	with	this	par4al	path	as	a	prefix	

State-space	search	algorithm	
;;	problem	describes	the	start	state,	operators,	goal	test,	and	operator	costs	
;;	queueing-func5on	is	a	comparator	func5on	that	ranks	two	states	
;;	general-search	returns	either	a	goal	node	or	failure	
	

function general-search (problem, QUEUEING-FUNCTION)

 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
 problem.OPERATORS))
 end

					;;	Note:	The	goal	test	is	NOT	done	when	nodes	are	generated	
					;;	Note:	This	algorithm	does	not	detect	loops

Key	procedures	to	be	defined	

•  EXPAND	
–  Generate	all	successor	nodes	of	a	given	node	

•  GOAL-TEST	
–  Test	if	state	sa4sfies	all	goal	condi4ons	

•  QUEUEING-FUNCTION	
–  Used	to	maintain	a	ranked	list	of	nodes	that	are	
candidates	for	expansion	

Bookkeeping	

Typical	node	data	structure	includes:	
•  State	at	this	node	
•  Parent	node	
•  Operator	applied	to	get	to	this	node	
•  Depth	of	this	node	(number	of	operator	
applica4ons	since	ini4al	state)	
•  Cost	of	the	path	(sum	of	each	operator	
applica4on	so	far)	

Some	issues	
•  Search	process	constructs	a	search	tree/graph,	where		
– root	is	ini4al	state	and		
– leaf	nodes	are	nodes	
•  not	yet	expanded	(i.e.,	in	list	“nodes”)	or		
•  having	no	successors	(i.e.,	they’re	deadends	because	no	
operators	were	applicable	and	yet	they	are	not	goals)	

•  Search	graph	may	be	infinite	because	of	loops	even	if	
state	space	is	small	
•  Return	a	path	or	a	node,	depending	on	problem.		
– E.g.,	in	cryptarithme4c	return	a	node;	in	8-puzzle,	a	path	

•  Changing	defini4on	of	the	QUEUEING-FUNCTION	leads	
to	different	search	strategies	

EvaluaDng	search	strategies	
•  Completeness	
– Guarantees	finding	a	solu4on	whenever	one	exists	

•  Time	complexity	(worst	or	average	case)	
– Usually	measured	by	number	of	nodes	expanded	

•  Space	complexity	
– Usually	measured	by	maximum	size	of	the	graph	
during	the	search	

•  OpDmality/Admissibility	
–  If	a	solu4on	is	found,	is	it	guaranteed	to	be	an	
op4mal	one,	i.e.,	one	with	minimum	cost	

Uninformed	vs.	informed	search	
Uninformed	search	strategies	(blind	search)	
– Use	no	informa4on	about	likely	“direc4on”	of	goal	
node(s)		
– Methods:	breadth-first,	depth-first,	depth-limited,	
uniform-cost,	depth-first	itera4ve	deepening,	
bidirec4onal	

Informed	search	strategies	(heurisDc	search)	
– Use	informa4on	about	domain	to	(try	to)	(usually)	
head	in	the	general	direc4on	of	goal	node(s)	
– Methods:	hill	climbing,	best-first,	greedy	search,	
beam	search,	A,	A*	

Example	of	uninformed	search	strategies	

S

C B A

D G E

3 1 8

15 20 5
3

7

Consider this search space where S is the start
node and G is the goal. Numbers are arc costs.

Classic	uninformed	search	methods	

•  The	four		classic	uninformed	search	methods	
– Breadth	first	search	(BFS)	
– Depth	first	search	(DFS)	
– Uniform	cost	search	(generaliza5on	of	BFS)	
– Itera4ve	deepening	(blend	of	DFS	and	BFS)	

•  To	which	we	can	add	another	technique	
– Bi-direc4onal	search	(hack	on	BFS)	

Breadth-First	Search	
•  Enqueue	nodes	in	FIFO	(first-in,	first-out)	order	
•  Complete		
•  OpDmal	(i.e.,	admissible)	if	all	operators	have	same	cost.	Otherwise,	not	
op4mal	but	finds	solu4on	with	shortest	path	length.		

•  ExponenDal	Dme	and	space	complexity,	O(bd),	where	d	is	depth	of	the	
solu4on	and	b	is	branching	factor	(i.e.,	number	of	children)	at	each	node		

•  Will	take	a	long	Dme	to	find	soluDons	with	a	large	number	of	steps	because	
must	look	at	all	shorter	length	possibili4es	first		

–  A	complete	search	tree	of	depth	d	where	each	non-leaf	node	has	b	children,	
has	total	of	1	+	b	+	b2	+	...	+	bd	=	(b(d+1)	-	1)/(b-1)	nodes		

–  For	a	search	tree	of	depth	12,	where	nodes	at	depths	0..11	have	10	children	
and	nodes	at	depth	12	have	0,	there	are	1+10+100+1000...1012	=	(1013-1)/9	=	
O(1012)	nodes	

–  If	BFS	expands	1000	nodes/sec	and	nodes	uses	100	bytes,	then	BFS	takes	35	
years	to	run	in	the	worst	case,	and	it	will	use	111	terabytes	of	memory!	

Breadth-First	Search	

	 	Expanded	node		 	Nodes	list	
	 	 	 	{	S0	}	
	 	 	S0 	{	A3	B1	C8	}	
	 	 	A3 	{	B1	C8	D6	E10	G18	}				
	 	 	B1 	{	C8	D6	E10	G18	G21	}	
	 	 	C8 	{	D6	E10	G18	G21	G13	}										
	 	 	D6 	{	E10	G18	G21	G13	}				
	 	 	E10 	{	G18	G21	G13	}						
	 	 	G18 	{	G21	G13	}	

				Solu4on	path	found	is	S	A	G	,	cost	18	
				Number	of	nodes	expanded	(including	goal	node)	=	7	

	Depth-First	(DFS)	
•  Enqueue	nodes	on	nodes	in	LIFO	(last-in,	first-out)	

order,	i.e.,		use	stack	data	structure	to	order	nodes	
•  May	not	terminate	without	a	depth	bound,	i.e.,	cuzng	

off	search	below	a	fixed	depth	D	(depth-limited	search)	
•  Not	complete	(with	or	without	cycle	detec4on,	and	

with	or	without	a	cutoff	depth)		
•  ExponenDal	Dme,	O(bd),	but	only	linear	space,	O(bd)	
•  Can	find	long	soluDons	quickly	if	lucky	(and	short	

soluDons	slowly	if	unlucky!)	
•  When	search	hits	deadend,	can	only	back	up	one	level	

at	a	4me	even	if	“problem”	occurs	because	of	a	bad	
choice	at	top	of	tree		

Depth-First	Search		
	 	Expanded	node		 	Nodes	list	
	 	 	 	{	S0	}	
	 	 	S0 	{	A3	B1	C8	}	
	 	 	A3 	{	D6	E10	G18	B1	C8	}					
	 	 	D6 	{	E10	G18	B1	C8	}	
	 	 	E10 	{	G18	B1	C8	}																
	 	 	G18 	{	B1	C8	}		

	
				Solu4on	path	found	is	S	A	G,	cost	18	
				Number	of	nodes	expanded	(including	goal	node)	=	5	

Uniform-Cost	(UCS)	
•  Enqueue	nodes	by	path	cost.	i.e.,	let	g(n)	=	cost	of	
path	from	start	to	current	node	n.	Sort	nodes	by	
increasing	value	of	g.		

•  Also	called	Dijkstra’s	Algorithm,	similar	to	Branch	
and	Bound	Algorithm	from	opera4ons	research	

•  Complete	(*)	
•  OpDmal/Admissible	(*)	
– Admissibility	depends	on	goal	test	being	applied	when	a	
node	is	removed	from	nodes	list,	not	when	its	parent	
node	is	expanded	and	the	node	is	first	generated		

•  ExponenDal	Dme	and	space	complexity,	O(bd)		

Uniform-Cost	Search		
	 	Expanded	node		 	Nodes	list	
	 	 	 	{	S0	}	
	 	 	S0 	{	B1	A3	C8	}	
	 	 	B1 	{	A3	C8	G21	}	
	 	 	A3 	{	D6	C8	E10	G18	G21	}		
	 	 	D6 	{	C8	E10	G18	G21	}	
	 	 	C8 	{	E10	G13	G18	G21	}								
	 	 	E10 	{	G13	G18	G21	}	
	 	 	G13 	{	G18	G21	}																														

				Solu4on	path	found	is	S	C	G,	cost	13	
				Number	of	nodes	expanded	(including	goal	node)	=	7	

Depth-First	IteraDve	Deepening	(DFID)	
•  Do	DFS	to	depth	0,	then,	if	no	solu4on,	do	DFS	
to	depth	1,	etc.	

•  Usually	used	with	a	tree	search	
•  Complete		
•  OpDmal/Admissible	if	all	operators	have	same	
cost,	otherwise,		guarantees	finding	solu4on	of	
shortest	length	(like	BFS)	

•  Time	complexity	a	bit	worse	than	BFS	or	DFS	
Nodes	near	top	of	search	tree	generated	many	4mes,	
but	since	almost	all	nodes	are	near	tree	bonom,	
worst	case	4me	complexity	is	s4ll	exponen4al,	O(bd)		

•  If	branching	factor	is	b	and	solu4on	is	at	depth	d,	
then	nodes	at	depth	d	are	generated	once,	nodes	
at	depth	d-1	are	generated	twice,	etc.		
– Hence	bd	+	2b(d-1)	+	...	+	db	<=	bd	/	(1	-	1/b)2	=	O(bd).		
– If	b=4,	worst	case	is	1.78	*	4d,	i.e.,	78%	more	nodes	
searched	than	exist	at	depth	d	(in	worst	case)	

• Linear	space	complexity,	O(bd),	like	DFS		
• Has	advantages	of	BFS	(completeness)	and	DFS	
(i.e.,	limited	space,	finds	longer	paths	quickly)		
• Preferred	for	large	state	spaces	where	soluDon	
depth	is	unknown	

Depth-First	IteraDve	Deepening	(DFID)	

How	they	perform	
•  Depth-First	Search:		

–  4	Expanded	nodes:	S	A	D	E	G		
–  Solu4on	found:	S	A	G	(cost	18)	

•  Breadth-First	Search:		
–  7	Expanded	nodes:	S	A	B	C	D	E	G		
–  Solu4on	found:	S	A	G	(cost	18)	

•  Uniform-Cost	Search:		
–  7	Expanded	nodes:	S	A	D	B	C	E	G		
–  Solu4on	found:	S	C	G	(cost	13)	
Only	uninformed	search	that	worries	about	costs	

•  IteraDve-Deepening	Search:		
–  10	nodes	expanded:	S	S	A	B	C	S	A	D	E	G		
–  Solu4on	found:	S	A	G	(cost	18)	

Searching	Backward	from	Goal	
•  Usually	a	successor	func4on	is	reversible	
–  i.e.,	can	generate	a	node’s	predecessors	in	graph	

•  If	we	know	a	single	goal	(rather	than	a	goal’s		
proper4es),	we	could	search	backward	to	the	
ini4al	state	

•  It	might	be	more	efficient	
– Depends	on	whether	the	graph	fans	in	or	out	
	

Bi-direcDonal	search	

•  Alternate	searching	from	the	start	state	toward	the	goal	
and	from	the	goal	state	toward	the	start.	

•  Stop	when	the	fron4ers	intersect.	
•  Works	well	only	when	there	are	unique	start	and	goal	

states.	
•  Requires	the	ability	to	generate	“predecessor”	states.	
•  Can	(some4mes)	lead	to	finding	a	solu4on	more	quickly.	

Comparing	Search	Strategies		

Some	simple	improvements	

•  In	increasing	order	of	effec4veness	in	
reducing	size	of	state	space	and	with	
increasing	computa4onal	costs:	
1.	Never	return	to	state	you	just	came	from	
2.	Never	create	paths	with	cycles	in	them		
3.	Never	generate	a	state	that	was	ever	
created	before	

• Net	effect	depends	on	frequency	of	loops	in	
state	space	

A	State	Space	that	Generates	an	

	ExponenDally	Growing		Search	Space		

Holy	Grail	Search	
	 	Expanded	node		 	Nodes	list	
	 	 	 	{	S0	}	
	 	 	S0 	{C8	A3	B1	}	
	 	 	C8 	{	G13	A3	B1	}					
	 	 	G13 	{	A3	B1	}		

	
				Solu4on	path	found	is	S	C	G,	cost	13	(opDmal)	
				Number	of	nodes	expanded	(including	goal	node)	=	3		

	(as	few	as	possible!)	
	
	If	only	we	knew	where	we	were	headed…	

