HWS3: Planning

PDDL

e Planning Domain Description Language
e Based on STRIPS with various extensions

e Originally defined by Drew McDermott (Yale)
and others

e Used in the biennial International Planning
Competition (IPC) series
e Many planners use it as a standard input

PDDL Representation

e A task specified via two files: domain file and
problem file

e Problem file gives objects, initial state, and
goal state

e Domain file gives predicates and operators;
these may be re-used for different problem
files

e Domain file corresponds to the transition

system, the problem files constitute instances
in that system

e

(define (domain hw5) Blocks .Wo.rd .
(:requirements :strips) Domain File =4
(:constants red green blue yellow) m'

(:predicates (on ?x ?y) (on-table ?x) (block ?x) ... (clean ?x))
(:action pick-up
:parameters (?0objl)
:precondition (and (clear ?0bj1) (on-table ?objl)
(arm-empty))
:effect (and (not (on-table ?obj1))
(not (clear ?0bjl))
(not (arm-empty))
(holding ?0bjl)))
... more actions ...)

(define (problem 00)
(:domain hw5)
(:objects A B C)
(:init (arm-empty)

(block A)

(color A red)
(on-table A)
(block B)

(on B A)

(block C)

(on C B)

(clear C))

(:goal (and (on A B) (on B C))))

Blocks Word
Problem File

< @

A

Blackbox planner

 Blackbox planner converts STRIPS-like
problems into Boolean satisfiability problems

* Input given in PDDL (domain and problem)
* Solves with a variety of satisfiability engines

* Open source; executables for Linux, Mac,
Windows from http://bit.ly/BBpddl

—Do blackbox -help for options

—Installed on gl as ~finin/pub/blackbox

&S

Blackbox planner \;"

> git clone https://github.com/UMBC-CMSC-471-01-SP2016/hwS5.git

> cd hw5; Is

domain.pddl p00.pddl p0O.pddl pl.pddl p2.pddl p3.pddl p4.pddl README.md session.txt
> ~finin/pub/blackbox -0 domain.pddl -f p00.pddl

blackbox version 43

Loading domain file: domain.pddl
Loading fact file: p00.pddl

Begin plan

1 (unstack ¢ b)
2 (put-down c¢)
3 (unstack b a)
4 (stack b ¢)

5 (pick-up a)
6 (stack a b)
End plan

Total elapsed time: 0.01 seconds

(1) Extend the domain: new objects

 Paint sprayers. Each sprayer can only paint
in one color (e.g., red, green, blue).

 Paint cans. A paint can holds only only color
of paint.

 Brushes. A brush can either be clean or
loaded with paint of a particular color.

* Water bucket. A water bucket 1s used to
wash brushes.

(2) Extend the domain: new actions

* painting an object with a sprayer

e painting an object with a brush and can

* loading a brush with paint of a given color

» washing a brush, making it clean

Action preconditions

* To paint an object, 1t must be on the table and clear

 Painting with a sprayer: just pick it up and spray

* To paint something a color with a brush, it must be
loaded with paint of that color.

* To load paint bush with a color, you must be holding
brush, brush must be clean and there must be a paint
can with that color that 1s clear. When a brush 1s loaded
with a color it 1s not clean.

* To wash a brush, making 1t clean, you must have a
water bucket that has nothing on it (i.e., 1s clear) and
you have to be holding the brush

Problem pl.ppd

;; There is only one block, A, which is on the table. A can with
;; red paint is on the table. There is a clean brush on the
;; table. Our goal is to have A be red and the arm empty.

(define (problem 1)
(:domain hwo)
(:objects)
(:init (arm-empty)
... block A on the table with nothing on it ...
... ared paint can on the table with nothing on it ...
... a clean brush is on the table with nothing on it ...
)
(:goal (and (arm-empty)
Aisred ...)

