
Logical
Inference 3
resolution

Chapter 9

Some material adopted from notes by Andreas
Geyer-Schulz,, Chuck Dyer, and Mary Getoor

Resolution

•  Resolution is a sound and complete
inference procedure for unrestricted FOL

•  Reminder: Resolution rule for propositional
logic:
– P1 ∨ P2 ∨ ... ∨ Pn
– ¬P1 ∨ Q2 ∨ ... ∨ Qm
– Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm

•  We’ll need to extend this to handle
quantifiers and variables

Two Common Normal Forms for a KB
Conjunctive normal form
• Set of sentences expressed

as disjunctions literals
P
Q
~P ∨ ~Q ∨ R

Implicative normal form
• Set of sentences expressed

as implications where left
hand sides are conjunctions
of 0 or more literals
P
Q
P∧Q => R

•  Recall: literal is an atomic expression or its negation
 e.g., loves(john, X), ~ hates(mary, john)

•  Any KB of sentences can be expressed in either form

Resolution covers many cases
• Modes Ponens

– from P and P → Q derive Q
– from P and ¬ P ∨ Q derive Q

• Chaining
– from P → Q and Q → R derive P → R
– from (¬ P ∨ Q) and (¬ Q ∨ R) derive ¬ P ∨ R

• Contradiction detection
– from P and ¬ P derive false
– from P and ¬ P derive the empty clause (= false)

Resolution in first-order logic
• Given sentences in conjunctive normal form:

–  P1 ∨ ... ∨ Pn and Q1 ∨ ... ∨ Qm
– Pi and Qi are literals, i.e., positive or negated predicate

symbol with its terms

•  if Pj and ¬Qk unify with substitution list θ, then
derive the resolvent sentence:
subst(θ, P1∨…∨Pj-1∨Pj+1…Pn∨ Q1∨…Qk-1∨Qk+1∨…∨Qm)

• Example
– from clause P(x, f(a)) ∨ P(x, f(y)) ∨ Q(y)
– and clause ¬P(z, f(a)) ∨ ¬Q(z)
– derive resolvent P(z, f(y)) ∨ Q(y) ∨ ¬Q(z)
– Using θ = {x/z}

A resolution proof tree

A resolution proof tree
~P(w) v Q(w) ~Q(y) v S(y)

~P(w) v S(w)

P(x) v R(x)
~True v P(x) v R(x)

S(x) v R(x)

~R(w) v S(w)

S(A) v S(A)
S(A)

Resolution refutation (1)

• Given a consistent set of axioms KB and
goal sentence Q, show that KB |= Q

• Proof by contradiction: Add ¬Q to KB
and try to prove false, i.e.:
(KB |- Q) ↔ (KB ∧ ¬Q |- False)

Resolution refutation (2)
• Resolution is refutation complete: can show

sentence Q is entailed by KB, but can’t always
generate all consequences of a set of sentences

• Can’t prove Q is not entailed by KB
• Resolution won’t always give an answer

since entailment is only semi-decidable
– And you can’t just run two proofs in parallel,

one trying to prove Q and the other trying to
prove ¬Q, since KB might not entail either one

Resolution example

•  KB:
–  allergies(X) → sneeze(X)
–  cat(Y) ∧ allergicToCats(X) → allergies(X)
–  cat(felix)
–  allergicToCats(mary)

•  Goal:
–  sneeze(mary)

Refutation resolution proof tree

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergicToCats(z) ∨ allergies(z)

¬cat(y) v sneeze(z) ∨ ¬allergicToCats(z) cat(felix)

sneeze(z) v ¬allergicToCats(z) allergicToCats(mary)

false

¬sneeze(mary) sneeze(mary)

w/z

y/felix

z/mary

negated query

Notation
old/new

Some tasks to be done
• Convert FOL sentences to conjunctive normal

form (aka CNF, clause form): normalization
and skolemization

• Unify two argument lists, i.e., how to find their
most general unifier (mgu) q: unification

• Determine which two clauses in KB should be
resolved next (among all resolvable pairs of
clauses) : resolution (search) strategy

Converting
to CNF

Converting sentences to CNF
1. Eliminate all ↔ connectives

(P ↔ Q) ⇒ ((P → Q) ^ (Q → P))
2. Eliminate all → connectives

(P → Q) ⇒ (¬P ∨ Q)
3. Reduce the scope of each negation symbol to a single predicate
¬¬P ⇒ P
¬(P ∨ Q) ⇒ ¬P ∧ ¬Q
¬(P ∧ Q) ⇒ ¬P ∨ ¬Q
¬(∀x)P ⇒ (∃x)¬P
¬(∃x)P ⇒ (∀x)¬P

4. Standardize variables: rename all variables so that each
quantifier has its own unique variable name

See the function
to_cnf() in logic.py

Converting sentences to clausal form
Skolem constants and functions

5. Eliminate existential quantification by introducing Skolem
constants/functions
(∃x)P(x) ⇒ P(C)

 C is a Skolem constant (a brand-new constant symbol that is not
used in any other sentence)

(∀x)(∃y)P(x,y) ⇒ (∀x)P(x, f(x))
 since ∃ is within scope of a universally quantified variable, use a
Skolem function f to construct a new value that depends on the
universally quantified variable

f must be a brand-new function name not occurring in any other
sentence in the KB

E.g., (∀x)(∃y)loves(x,y) ⇒ (∀x)loves(x,f(x))
 In this case, f(x) specifies the person that x loves
 a better name might be oneWhoIsLovedBy(x)

Converting sentences to clausal form
6. Remove universal quantifiers by (1) moving them all to the

left end; (2) making the scope of each the entire sentence;
and (3) dropping the “prefix” part
Ex: (∀x)P(x) ⇒ P(x)

7. Put into conjunctive normal form (conjunction of
disjunctions) using distributive and associative laws
(P ∧ Q) ∨ R ⇒ (P ∨ R) ∧ (Q ∨ R)
(P ∨ Q) ∨ R ⇒ (P ∨ Q ∨ R)

8. Split conjuncts into separate clauses
9. Standardize variables so each clause contains only variable

names that do not occur in any other clause

An example
(∀x)(P(x) → ((∀y)(P(y) → P(f(x,y))) ∧ ¬(∀y)(Q(x,y) → P(y))))
2. Eliminate →

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧ ¬(∀y)(¬Q(x,y) ∨ P(y))))
3. Reduce scope of negation

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃y)(Q(x,y) ∧ ¬P(y))))
4. Standardize variables

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃z)(Q(x,z) ∧ ¬P(z))))
5. Eliminate existential quantification

(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x)))))
6. Drop universal quantification symbols

(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x)))))

Example
7. Convert to conjunction of disjunctions

(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ∧ (¬P(x) ∨ Q(x,g(x))) ∧
 (¬P(x) ∨ ¬P(g(x)))

8. Create separate clauses
¬P(x) ∨ ¬P(y) ∨ P(f(x,y))
¬P(x) ∨ Q(x,g(x))
¬P(x) ∨ ¬P(g(x))

9. Standardize variables
¬P(x) ∨ ¬P(y) ∨ P(f(x,y))
¬P(z) ∨ Q(z,g(z))
¬P(w) ∨ ¬P(g(w))

Unification

Unification
• Unification is a “pattern-matching” procedure

– Takes two atomic sentences (i.e., literals) as input
– Returns “failure” if they do not match and a

substitution list, θ, if they do
• That is, unify(p,q) = θ means subst(θ, p) = subst(θ, q)

for two atomic sentences, p and q
• θ is called the most general unifier (mgu)
• All variables in the given two literals are implicitly

universally quantified
• To make literals match, replace (universally

quantified) variables by terms

Unification algorithm
procedure unify(p, q, θ)
 Scan p and q left-to-right and find the first corresponding
 terms where p and q “disagree” (i.e., p and q not equal)
 If there is no disagreement, return θ (success!)
 Let r and s be the terms in p and q, respectively,
 where disagreement first occurs
 If variable(r) then {
 Let θ = union(θ, {r/s})
 Return unify(subst(θ, p), subst(θ, q), θ)
 } else if variable(s) then {
 Let θ = union(θ, {s/r})
 Return unify(subst(θ, p), subst(θ, q), θ)
 } else return “Failure”
 end

See the function
unify() in logic.py

Unification: Remarks
• Unify is a linear-time algorithm that returns the

most general unifier (mgu), i.e., the shortest-length
substitution list that makes the two literals match

•  In general, there isn’t a unique minimum-length
substitution list, but unify returns one of minimum
length

• Common constraint: A variable can never be
replaced by a term containing that variable
Example: x/f(x) is illegal.
– This “occurs check” should be done in the above

pseudo-code before making the recursive calls

Unification examples
•  Example:

–  parents(x, father(x), mother(Bill))
–  parents(Bill, father(Bill), y)
–  {x/Bill,y/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill))

•  Example:
–  parents(x, father(x), mother(Bill))
–  parents(Bill, father(y), z)
–  {x/Bill,y/Bill,z/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill))

•  Example:
–  parents(x, father(x), mother(Jane))
–  parents(Bill, father(y), mother(y))
–  Failure

Resolution
example

Practice example
 Did Curiosity kill the cat

• Jack owns a dog
• Every dog owner is an animal lover
• No animal lover kills an animal
• Either Jack or Curiosity killed the cat,
who is named Tuna.

•  Did Curiosity kill the cat?

Practice example
 Did Curiosity kill the cat

•  Jack owns a dog. Every dog owner is an animal lover. No
animal lover kills an animal. Either Jack or Curiosity killed
the cat, who is named Tuna. Did Curiosity kill the cat?

•  These can be represented as follows:
A. (∃x) Dog(x) ∧ Owns(Jack,x)
B. (∀x) ((∃y) Dog(y) ∧ Owns(x, y)) → AnimalLover(x)
C. (∀x) AnimalLover(x) → ((∀y) Animal(y) → ¬Kills(x,y))
D. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. (∀x) Cat(x) → Animal(x)
G. Kills(Curiosity, Tuna)

GOAL

• Convert to clause form
A1. (Dog(D))
A2. (Owns(Jack,D))
B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x))
C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. (¬Cat(z), Animal(z))

• Add the negation of query:
¬G: ¬Kills(Curiosity, Tuna)

∃x Dog(x) ∧ Owns(Jack,x)
∀x (∃y) Dog(y) ∧ Owns(x, y) →

AnimalLover(x)
∀x AnimalLover(x) → (∀y Animal(y) →

¬Kills(x,y))
Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
Cat(Tuna)
∀x Cat(x) → Animal(x)
Kills(Curiosity, Tuna)

R1: ¬G, D, {} (Kills(Jack, Tuna))
R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack),

 ~Animal(Tuna))
R3: R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y),

 ~Animal(Tuna))
R4: R3, A1, {y/D} (~Owns(Jack, D),

 ~Animal(Tuna))
R5: R4, A2, {} (~Animal(Tuna))
R6: R5, F, {z/Tuna} (~Cat(Tuna))
R7: R6, E, {} FALSE

The resolution refutation proof

The proof tree

¬G D

C

B

A1

A2

F

E

R1: K(J,T)

R2: ¬AL(J) ∨ ¬A(T)

R3: ¬D(y) ∨ ¬O(J,y) ∨ ¬A(T)

R4: ¬O(J,D), ¬A(T)

R5: ¬A(T)

R6: ¬C(T)

R7: FALSE

{}

{a/J,b/T}

{x/J}

{y/D}

{}

{z/T}

{}

Resolution
search

strategies

Resolution Theorem Proving as search
• Resolution is like the bottom-up construction of a

search tree, where the leaves are the clauses
produced by KB and the negation of the goal

• When a pair of clauses generates a new resolvent
clause, add a new node to the tree with arcs directed
from the resolvent to parent clauses

• Resolution succeeds when node containing False is
produced, becoming root node of the tree

• Strategy is complete if it guarantees that empty
clause (i.e., false) can be derived when it’s entailed

Strategies
• There are a number of general (domain-independent)

strategies that are useful in controlling a resolution
theorem prover

• Well briefly look at the following:
– Breadth-first
– Length heuristics
– Set of support
– Input resolution
– Subsumption
– Ordered resolution

Example

1.  Battery-OK ∧ Bulbs-OK → Headlights-Work

2.  Battery-OK ∧ Starter-OK → Empty-Gas-Tank ∨ Engine-Starts

3.  Engine-Starts → Flat-Tire ∨ Car-OK

4.  Headlights-Work

5.  Battery-OK

6.  Starter-OK

7.  ¬Empty-Gas-Tank

8.  ¬Car-OK

9.  Goal: Flat-Tire ?

Example

1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work

2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts

3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK

4.  Headlights-Work

5.  Battery-OK

6.  Starter-OK

7.  ¬Empty-Gas-Tank

8.  ¬Car-OK

9.  ¬Flat-Tire negated goal

Breadth-first search
•  Level 0 clauses are the original axioms and the negation of

the goal
•  Level k clauses are the resolvents computed from two

clauses, one of which must be from level k-1 and the other
from any earlier level

•  Compute all possible level 1 clauses, then all possible level
2 clauses, etc.

•  Complete, but very inefficient

BFS example
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4.  Headlights-Work
5.  Battery-OK
6.  Starter-OK
7.  ¬Empty-Gas-Tank
8.  ¬Car-OK
9.  ¬Flat-Tire
10.  ¬Battery-OK ∨ ¬Bulbs-OK
11.  ¬Bulbs-OK ∨ Headlights-Work
12.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Flat-Tire ∨ Car-OK
13.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
14.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
15.  ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
16.  … [and we’re still only at Level 1!]

1,4
1,5
2,3
2,5
2,6
2,7

Length heuristics

• Shortest-clause heuristic:
Generate a clause with the fewest literals first

• Unit resolution:
Prefer resolution steps in which at least one parent
clause is a “unit clause,” i.e., a clause containing a
single literal
– Not complete in general, but complete for Horn

clause KBs

Unit resolution example
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4.  Headlights-Work
5.  Battery-OK
6.  Starter-OK
7.  ¬Empty-Gas-Tank
8.  ¬Car-OK
9.  ¬Flat-Tire
10.  ¬Bulbs-OK ∨ Headlights-Work
11.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
12.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
13.  ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
14.  ¬Engine-Starts ∨ Flat-Tire
15.  ¬Engine-Starts ¬ Car-OK
16.  … [this doesn’t seem to be headed anywhere either!]

1,5
2,5
2,6
2,7
3,8
3,9

Set of support

• At least one parent clause must be the negation of
the goal or a “descendant” of such a goal clause
(i.e., derived from a goal clause)

• When there’s a choice, take the most recent
descendant

• Complete, assuming all possible set-of-support
clauses are derived

• Gives a goal-directed character to the search (e.g.,
like backward chaining)

Set of support example
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4.  Headlights-Work
5.  Battery-OK
6.  Starter-OK
7.  ¬Empty-Gas-Tank
8.  ¬Car-OK
9.  ¬Flat-Tire
10.  ¬Engine-Starts ∨ Car-OK
11.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
12.  ¬Engine-Starts
13.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
14.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Car-OK
15.  ¬Battery-OK ∨ ¬Starter-OK ∨ Car-OK
16.  … [a bit more focused, but we still seem to be wandering]

9,3
10,2
10,8
11,5
11,6
11,7

Unit resolution + set of support example
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4.  Headlights-Work
5.  Battery-OK
6.  Starter-OK
7.  ¬Empty-Gas-Tank
8.  ¬Car-OK
9.  ¬Flat-Tire
10.  ¬Engine-Starts ∨ Car-OK
11.  ¬Engine-Starts
12.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank
13.  ¬Starter-OK ∨ Empty-Gas-Tank
14.  Empty-Gas-Tank
15.  FALSE
[Hooray! Now that’s more like it!]

9,3
10,8
11,2
12,5
13,6
14,7

Simplification heuristics
•  Subsumption:

Eliminate sentences that are subsumed by (more
specific than) an existing sentence to keep KB small
–  If P(x) is already in the KB, adding P(A) makes no sense –

P(x) is a superset of P(A)
– Likewise adding P(A) ∨ Q(B) would add nothing to the KB

•  Tautology:
Remove any clause containing two complementary
literals (tautology)

•  Pure symbol:
If a symbol always appears with the same “sign,”
remove all the clauses that contain it

Example (Pure Symbol)

1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4.  Headlights-Work
5.  Battery-OK
6.  Starter-OK
7.  ¬Empty-Gas-Tank
8.  ¬Car-OK
9.  ¬Flat-Tire

Input resolution

• At least one parent must be one of the input
sentences (i.e., either a sentence in the original KB
or the negation of the goal)

• Not complete in general, but complete for Horn
clause KBs

• Linear resolution
– Extension of input resolution
– One of the parent sentences must be an input sentence or

an ancestor of the other sentence
– Complete

Ordered resolution
• Search for resolvable sentences in order (left to

right)
• This is how Prolog operates
• Resolve the first element in the sentence first
• This forces the user to define what is important in

generating the “code”
• The way the sentences are written controls the

resolution

