’:ln Logical

Inference 3
resolution

o

Chapter 9

Resolution

* Resolution is a sound and complete
inference procedure for unrestricted FOL

 Reminder: Resolution rule for propositional
logic:
-P,vP,v..VvP

—=P,vQ,v..vQ,
—Resolvent: P, v..vP. vQ,v..vQ

e We’ll need to extend this to handle
quantifiers and variables

m

Two Common Normal Forms for a KB

Implicative normal form Conjunctive normal form
 Set of sentences expressed ¢ Set of sentences expressed

as implications where left as disjunctions literals
hand sides are conjunctions P

of 0 or more literals 0

P ~Pv~QvVR

Q

PAQ=>R

* Recall: literal 1s an atomic expression or its negation
e.g., loves(john, X), ~ hates(mary, john)
* Any KB of sentences can be expressed in either form

Resolution covers many cases

* Modes Ponens

—fromPand P—=Q derive Q
—from P and = P v Q derive Q
* Chaining
—fromP—=Qand Q — R derive P = R
—from (= P v Q)and (- Q v R) derive = P v R
» Contradiction detection

—from P and - P derive false
—from P and = P derive the empty clause (= false)

Resolution in first-order logic

« (G1ven sentences 1n conjunctive normal form:
— P,v..vP, and Q,v..vQ,

—P. and Q, are literals, 1.e., positive or negated predicate
symbol with its terms

* it P, and —~Q, unify with substitution list 6, then
derive the resolvent sentence:
subst(0, Pyv...vP;, VP, ...P v Qv...Q_;vQy Vv...vQ,)

« Example
— from clause P(x, f(a)) v P(x, f(y)) v Q(y)
— and clause = P(z, f(a)) v = Q(z)
— derive resolvent P(z, f(y)) v Q(y) v =Q(z)
— Using 0 = {x/z}

A resolution proof tree

P(w) = Q(w)

Q(v) = S(v)

P(w) = S(w) T'rue = P(x) VR(x)

True = S(x) VR(x) R(z) = 8(z)

True = S(A)

A resolution proof tree

~P(W) v Q(W)

P(w) = QO(w)

~Q(y) v S(y)
Q(y) = S(v)

P(w) = S(w)

~True v P(x) v R(x)
P(x) v R(x)

True = P(x) VR(x)

~P(w) v S(w)

S(x) v R(x)

W ~R(w) v S(w)

True = S(x) VR(x)

R(z) = S(z)

True = S(A)

S(A) v S(A)

S(A)

Resolution refutation (1)

* G1ven a consistent set of axioms KB and
goal sentence Q, show that KB |= Q

* Proof by contradiction: Add -Q to KB
and try to prove false, 1.¢.:

(KB |- Q) « (KB A =Q |- False)

Resolution refutation (2)

* Resolution 1s refutation complete: can show
sentence Q 1s entailed by KB, but can’t always
generate all consequences of a set of sentences

* Can’t prove Q 1s not entailed by KB

* Resolution won’t always give an answer
since entallment 1s only semi-decidable
—And you can’t just run two proofs in parallel,

one trying to prove Q and the other trying to
prove = Q, since KB might not entail either one

Resolution example

 KB:
— allergies(X) — sneeze(X)
— cat(Y) A allergicToCats(X) — allergies(X)
— cat(felix)
— allergicToCats(mary)
* Goal:

— sneeze(mary)

Refutation resolution proof tree

—allergies(w) v sneeze(w) —cat(y) v —allergicToCats(z) v allergies(z)
w/z
= cat(y) v sneeze(z) v —allergicToCats(z) cat(felix)
y/felix
sneeze(z) v —allergicToCats(z) allergicToCats(mary)
\Z/yy/
sneeze(mary) —sneeze(mary)
Notation \/
old/new false

negated query

Some tasks to be done

* Convert FOL sentences to conjunctive normal
form (aka CNF, clause form): normalization
and skolemization

* Unify two argument lists, 1.€., how to find their
most general unifier (mgu) q: unification

* Determine which two clauses in KB should be
resolved next (among all resolvable pairs of
clauses) : resolution (search) strategy

Converting
to CNF

Converting sentences to CNF

1. Eliminate all «<» connectives

PR SO A (O —> See the function
FoQ= F>Q"Q=F) to cnf() 1n logic.py

2. Eliminate all — connectives
P—=Q=(-PvQ)

3. Reduce the scope of each negation symbol to a single predicate
--P=P
-(Pv Q)= -PaA-=Q
-PAQ)=-Pv =Q
-(Vx)P = (dx)-P
-(Ix)P = (Vx)=-P

4. Standardize variables: rename all variables so that each

quantifier has its own unique variable name

Converting sentences to clausal form
Skolem constants and functions

5. Eliminate existential quantification by introducing Skolem
constants/functions
(Ix)P(x) = P(C)
C is a Skolem constant (a brand-new constant symbol that 1s not
used 1n any other sentence)

(VX)@y)P(x,y) = (VX)P(x, f(x))

since J is within scope of a universally quantified variable, use a
Skolem function f to construct a new value that depends on the
universally quantified variable

f must be a brand-new function name not occurring in any other
sentence in the KB

E.g., (Vx)(dy)loves(x,y) = (Vx)loves(x,f(x))
In this case, f(x) specifies the person that x loves
a better name might be oneWholsLovedBy(x)

Converting sentences to clausal form

6. Remove universal quantifiers by (1) moving them all to the
left end; (2) making the scope of each the entire sentence;
and (3) dropping the “prefix” part

Ex: (Vx)P(x) = P(x)
7. Put into conjunctive normal form (conjunction of
disjunctions) using distributive and associative laws
(PAQ)VR=(PVvR)A(QVR)
(PvQ)VR=(PvQVvR)
8. Split conjuncts into separate clauses

9. Standardize variables so each clause contains only variable
names that do not occur in any other clause

An example
(V)(P(x) = (YVy)(P(y) = P(E.Y)) A =(YY)(Q(xY) = P(y))))

2. Eliminate —

(Vx)(=P(x) v (Vy)(=P(y) v P(f(x,y))) A =(Vy)(=Q(x,y) v P(¥))))
3. Reduce scope of negation

(VX)(=P(x) v (Vy)(=P(y) v P(f(x,y))) A(@y)(Q(x,y) A =P(y))))

4. Standardize variables

(VX)(=P(x) v (Vy)(=P(y) v P(f(x,y))) A(32)(Q(x,2) A ~P(2))))

5. Eliminate existential quantification

(VX)(=P(x) v((Vy)(=P(y) v P(f(x,y))) A(Q(x,g(x)) A =P(g(x)))))

6. Drop universal quantification symbols

(=P(x) v (=P(y) v P(f(x,y))) A(Q(x,g(x)) A =P(g(x)))))

Example

7. Convert to conjunction of disjunctions
(=Px) v =P(y) v P(f(x,y))) A (=P(x) v Q(x,g(x))) A
(-P(x) v =P(g(x)))
8. Create separate clauses
~P(x) v =P(y) v P(t(x,y))
~P(x) v Q(x,8(x))
~P(x) v =P(g(x))
9. Standardize variables
~P(x) v =P(y) v P(f(x,y))
~P(2) v Q(z,g(2))
~P(w) v =P(g(w))

Unification

Unification

e Unification is a “pattern-matching” procedure
—Takes two atomic sentences (1.¢€., literals) as input

—Returns “failure” if they do not match and a
substitution list, 0, 1f they do

* That 1s, unify(p,q) = 6 means subst(6, p) = subst(6, q)
for two atomic sentences, p and ¢

* 0 1s called the most general unifier (mgu)

 All variables 1n the given two literals are implicitly
universally quantified

* To make literals match, replace (universally
quantified) variables by terms

Unification algorithm

procedure unify(p, q, 0)
Scan p and q left-to-right and find the first corresponding
terms where p and q “disagree” (i.e., p and q not equal)
If there is no disagreement, return 0 (success!)
Let r and s be the terms 1n p and g, respectively,
where disagreement first occurs
If variable(r) then {
Let O = union(0, {r/s})
Return unify(subst(0, p), subst(0, q), 0)
} else 1f variable(s) then {
Let 6 = union(0, {s/r})
Return unify(subst(0, p), subst(0, q), 0)
} else return “Failure”

See the function
unify() in logic.py

end

Unification: Remarks

» Unify 1s a linear-time algorithm that returns the
most general unifier (mgu), 1.e., the shortest-length
substitution list that makes the two literals match

* In general, there 1sn’t a unique minimum-length
substitution list, but unify returns one of minimum
length

« Common constraint: A variable can never be
replaced by a term containing that variable
Example: x/f(x) 1s 1llegal.
— This “occurs check” should be done in the above
pseudo-code before making the recursive calls

Unification examples

« Example:
— parents(x, father(x), mother(Bill))
— parents(Bill, father(Bill), y)
— {x/Bill,y/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill))

« Example:
— parents(x, father(x), mother(Bill))
— parents(Bill, father(y), z)
— {x/Bill,y/Bill,z/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill))

« Example:
— parents(x, father(x), mother(Jane))
— parents(Bill, father(y), mother(y))

— Failure

Resolution
example

Practice example
Did Curiosity kill the cat

» Jack owns a dog
* Every dog owner 1s an animal lover
* No animal lover kills an animal

» Either Jack or Curiosity killed the cat,
who 1s named Tuna.

* Did Curiosity kill the cat?

Practice example
Did Curiosity kill the cat

Jack owns a dog. Every dog owner 1s an animal lover. No
animal lover kills an animal. Either Jack or Curiosity killed
the cat, who 1s named Tuna. Did Curiosity kill the cat?

These can be represented as follows:

A. (3x) Dog(x) A Owns(Jack,x)

B. (Vx) ((dy) Dog(y) A Owns(X, y)) = AnimalLover(x)

C. (Vx) AnimalLover(x) — ((Vy) Animal(y) — —Kills(x,y))
D. Kills(Jack,Tuna) v Kills(Curiosity, Tuna)

E. Cat(Tuna)

F. (Vx) Cat(x) — Animal(>i)/
G. Kills(Curiosity, Tuna)

GOAL

dx Dog(x) A Owns(Jack,x)

Vx (dy) Dog(y) A Owns(x, y) —
AnimalLover(x)

Vx AnimalLover(x) — (Vy Animal(y) —
= Kills(x,y))

° C()nvert tO CIause fOl'm Kills(Jack,Tuna) v Kills(Curiosity,Tuna)

A 1 ‘ (DOg(D)) S?(tg;r(l)?; - Animal(x)
A2. (Owns(Jack,D)) Kills(Curiosity, Tuna)

B. (=Dog(y), —=Owns(x, y), AnimalLover(x))
C. (-AnimalLover(a), = Animal(b), —Kills(a,b))
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. (=Cat(z), Animal(z))
* Add the negation of query:
- G: = Kills(Curiosity, Tuna)

R1:
R2:

R3:

R4

R5:
R6:
R7:

The resolution refutation proof

-G, D, {} (Kills(Jack, Tuna))
R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack),
~Animal(Tuna))
R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y),
~Animal(Tuna))

R3, Al, {y/D} (~Owns(Jack, D),
~Animal(Tuna))

R4, A2, {} (~Animal(Tuna))

RS, F, {z/Tuna} (~Cat(Tuna))

R6, E, {} FALSE

The proof tree

N4

R1: K(J,T)
{an/T}

R2: ~AL() v ~A(T) B

\{X/J} /

R3: =D(y) v =0(J,y) v =A(T)

Al
\ {y/D/

R4: ~O(J,D), ~A(T) A2

.

RS5: =A(T) F

N

R6: =C(T) E

~u/

R7: FALSE

Resolution
search
strategies

Resolution Theorem Proving as search

* Resolution 1s like the bottom-up construction of a
search tree, where the leaves are the clauses
produced by KB and the negation of the goal

* When a pair of clauses generates a new resolvent
clause, add a new node to the tree with arcs directed
from the resolvent to parent clauses

* Resolution succeeds when node containing False 1s
produced, becoming root node of the tree

 Strategy 1s complete 1f 1t guarantees that empty
clause (1.e., false) can be derived when 1t’s entailed

Strategies

e There are a number of general (domain-independent)
strategies that are useful in controlling a resolution
theorem prover

* Well briefly look at the following:
— Breadth-first
—Length heuristics
—Set of support
— Input resolution
— Subsumption
—Ordered resolution

O o N O U A D=

Example

Battery-OK A Bulbs-OK — Headlights-Work

Battery-OK A Starter-OK — Empty-Gas-Tank v Engine-Starts
Engine-Starts — Flat-Tire v Car-OK

Headlights-Work

Battery-OK

Starter-OK

- Empty-Gas-Tank

-Car-OK

Goal: Flat-Tire ?

O 0 N O U A WD

Example

- Battery-OK v -Bulbs-OK v Headlights-Work

- Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
-Engine-Starts v Flat-Tire v Car-OK

Headlights-Work

Battery-OK

Starter-OK

-Empty-Gas-Tank

-Car-OK

-Flat-Tire <= negated goal

Breadth-first search

* Level O clauses are the original axioms and the negation of
the goal

» Level k clauses are the resolvents computed from two
clauses, one of which must be from level k-1 and the other
from any earlier level

« Compute all possible level 1 clauses, then all possible level
2 clauses, etc.

« Complete, but very inefficient

1,4
1,5
2.3
25
2.6
2.7

©ONOUhAWWNE

BFS example

- Battery-OK v -Bulbs-OK v Headlights-Work

-Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
-Engine-Starts v Flat-Tire v Car-OK

Headlights-Work

Battery-OK

Starter-OK

-Empty-Gas-Tank

-Car-OK

- Flat-Tire

- Battery-OK v -Bulbs-OK

. ~Bulbs-OK v Headlights-Work

- Battery-OK v -Starter-OK v Empty-Gas-Tank v Flat-Tire v Car-OK

. -~ Starter-OK v Empty-Gas-Tank v Engine-Starts

- Battery-OK v Empty-Gas-Tank v Engine-Starts

. —~Battery-OK - Starter-OK v Engine-Starts
16.

... [and we’ re still only at Level 1!]

Length heuristics

* Shortest-clause heuristic:
Generate a clause with the fewest literals first

* Unit resolution:
Prefer resolution steps in which at least one parent
clause is a “unit clause,” i.e., a clause containing a
single literal

—Not complete 1n general, but complete for Horn
clause KBs

1,5
2.5
2.6
2.7
3,8
3,9

©ONOUhAWWNE

16

Unit resolution example

- Battery-OK v -Bulbs-OK v Headlights-Work

-Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts

-Engine-Starts v Flat-Tire v Car-OK
Headlights-Work

Battery-OK

Starter-OK

-Empty-Gas-Tank

-Car-OK

- Flat-Tire

-Bulbs-OK v Headlights-Work

. —~Starter-OK v Empty-Gas-Tank v Engine-Starts

- Battery-OK v Empty-Gas-Tank v Engine-Starts

. —~Battery-OK - Starter-OK v Engine-Starts

-Engine-Starts v Flat-Tire

. ~Engine-Starts - Car-OK

... [this doesn’ t seem to be headed anywhere either!]

Set of support

At least one parent clause must be the negation of
the goal or a “descendant” of such a goal clause
(1.e., dertved from a goal clause)

o When there’s a choice, take the most recent
descendant

« Complete, assuming all possible set-of-support
clauses are derived

» Gives a goal-directed character to the search (e.g.,
like backward chaining)

Set of support example

1. -Battery-OK v -Bulbs-OK v Headlights-Work
2. -Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
3. -Engine-Starts v Flat-Tire v Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
/. —-Empty-Gas-Tank
8. -Car-OK
9. -Flat-Tire
9,3 10. -Engine-Starts v Car-OK
10,2 11. -Battery-OK v -Starter-OK v Empty-Gas-Tank v Car-OK
10,8 12. -Engine-Starts
11,5 13. -Starter-OK v Empty-Gas-Tank v Car-OK
11,6 14. -Battery-OK v Empty-Gas-Tank v Car-OK
11,7 15. -Battery-OK v -Starter-OK v Car-OK

16. ... [a bit more focused, but we still seem to be wandering]

Unit resolution + set of support example

- Battery-OK v -Bulbs-OK v Headlights-Work
-Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
-Engine-Starts v Flat-Tire v Car-OK
Headlights-Work
Battery-OK
Starter-OK
-Empty-Gas-Tank
-Car-OK
- Flat-Tire
-Engine-Starts v Car-OK
. ~Engine-Starts
- Battery-OK v -Starter-OK v Empty-Gas-Tank
12,5 . —~Starter-OK v Empty-Gas-Tank
13,6 . Empty-Gas-Tank
14,7 15. FALSE
[Hooray! Now that’ s more like it!]

©ONOUhAWWNE

= O
-O -

9,3
10,8
11,2

N e O e
.hwl_\Jl—-

Simplification heuristics

* Subsumption:
Eliminate sentences that are subsumed by (more
specific than) an existing sentence to keep KB small
— If P(x) 1s already in the KB, adding P(A) makes no sense —
P(x) 1s a superset of P(A)
— Likewise adding P(A) v Q(B) would add nothing to the KB
* Tautology:
Remove any clause containing two complementary
literals (tautology)

 Pure symbol:
If a symbol always appears with the same “sign,”
remove all the clauses that contain it

OCoOoNOUhWNH

Example (Pure Symbol)

e=RBaftem Ol —Dulbe O Hoadliabtoarl
-Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
-Engine-Starts v Flat-Tire v Car-OK
=reTatgiTes=ivore
Battery-OK
Starter-OK
-Empty-Gas-Tank
-Car-OK
~Flat-Tire

Input resolution

At least one parent must be one of the input
sentences (1.e., either a sentence 1n the original KB
or the negation of the goal)

* Not complete 1n general, but complete for Horn
clause KBs

e [.inear resolution

— Extension of mput resolution

— One of the parent sentences must be an input sentence or
an ancestor of the other sentence

— Complete

Ordered resolution

 Search for resolvable sentences 1n order (left to
right)

 This 1s how Prolog operates

* Resolve the first element in the sentence first

 This forces the user to define what i1s important in
generating the “code”

* The way the sentences are written controls the
resolution

