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Resolution 

•  Resolution is a sound and complete 
inference procedure for unrestricted FOL 

•  Reminder: Resolution rule for propositional 
logic: 
– P1 ∨ P2 ∨ ... ∨ Pn  
– ¬P1 ∨ Q2 ∨ ... ∨ Qm  
– Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm  

•  We’ll need to extend this to handle 
quantifiers and variables 



Two Common Normal Forms for a KB 
Conjunctive normal form 
• Set of sentences expressed 

as disjunctions literals 
P 
Q 
~P ∨ ~Q ∨ R 

Implicative normal form 
• Set of sentences expressed 

as implications where left 
hand sides are conjunctions 
of 0 or more literals 
P  
Q 
P∧Q => R 

•  Recall: literal is an atomic expression or its negation 
 e.g., loves(john, X), ~ hates(mary, john) 

•  Any KB of sentences can be expressed in either form 



Resolution covers many cases 
• Modes Ponens 

– from P and  P → Q    derive Q         
– from P and ¬ P ∨ Q  derive Q 

• Chaining 
– from P → Q and Q → R           derive P → R  
– from (¬ P ∨ Q) and (¬ Q ∨ R)  derive ¬ P ∨ R 

• Contradiction detection 
– from P and ¬ P  derive false 
– from P and ¬ P  derive the empty clause (= false) 



Resolution in first-order logic 
• Given sentences in conjunctive normal form: 

–   P1 ∨ ... ∨ Pn    and   Q1 ∨ ... ∨ Qm  
– Pi and Qi are literals, i.e., positive or negated predicate 

symbol with its terms 

•  if Pj and ¬Qk unify with substitution list θ, then 
derive the resolvent sentence: 
subst(θ, P1∨…∨Pj-1∨Pj+1…Pn∨ Q1∨…Qk-1∨Qk+1∨…∨Qm) 

• Example 
– from clause P(x, f(a)) ∨ P(x, f(y)) ∨ Q(y)  
– and clause ¬P(z, f(a)) ∨ ¬Q(z) 
– derive resolvent P(z, f(y)) ∨ Q(y) ∨ ¬Q(z)  
– Using θ = {x/z}  



A resolution proof tree 



A resolution proof tree 
~P(w) v Q(w) ~Q(y) v S(y) 

~P(w) v S(w) 

P(x) v R(x) 
~True v P(x) v R(x) 

S(x) v R(x) 

~R(w) v S(w) 

S(A) v S(A)   
S(A) 



Resolution refutation (1) 

• Given a consistent set of axioms KB and 
goal sentence Q, show that KB |= Q 

• Proof by contradiction:  Add ¬Q to KB 
and try to prove false, i.e.: 
(KB |- Q) ↔ (KB ∧ ¬Q |- False)  



Resolution refutation (2) 
• Resolution is refutation complete: can show 

sentence Q is entailed by KB, but can’t always 
generate all consequences of a set of sentences 

• Can’t prove Q is not entailed by KB 
• Resolution won’t always give an answer 

since entailment is only semi-decidable 
– And you can’t just run two proofs in parallel, 

one trying to prove Q and the other trying to 
prove ¬Q, since KB might not entail either one 



Resolution example 

•  KB:   
–  allergies(X) → sneeze(X) 
–  cat(Y) ∧ allergicToCats(X) → allergies(X) 
–  cat(felix) 
–  allergicToCats(mary) 

•  Goal: 
–  sneeze(mary) 



Refutation resolution proof tree 

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergicToCats(z) ∨ allergies(z) 

¬cat(y) v sneeze(z) ∨ ¬allergicToCats(z) cat(felix) 

sneeze(z) v ¬allergicToCats(z) allergicToCats(mary) 

false 

¬sneeze(mary) sneeze(mary) 

w/z 

y/felix 

z/mary 

negated query 

Notation 
old/new 



Some tasks to be done 
• Convert FOL sentences to conjunctive normal 

form (aka CNF, clause form): normalization 
and skolemization 

• Unify two argument lists, i.e., how to find their 
most general unifier (mgu) q: unification 

• Determine which two clauses in KB should be 
resolved next (among all resolvable pairs of 
clauses) : resolution (search) strategy 



Converting 
to CNF 



Converting sentences to CNF 
1. Eliminate all ↔ connectives  

(P ↔ Q) ⇒  ((P → Q) ^ (Q → P))  
2. Eliminate all → connectives  

(P → Q) ⇒ (¬P ∨ Q)  
3. Reduce the scope of each negation symbol to a single predicate  
¬¬P ⇒ P 
¬(P ∨ Q) ⇒ ¬P ∧ ¬Q 
¬(P ∧ Q) ⇒ ¬P ∨ ¬Q 
¬(∀x)P ⇒ (∃x)¬P 
¬(∃x)P ⇒ (∀x)¬P  

4. Standardize variables: rename all variables so that each 
quantifier has its own unique variable name 

See the function 
to_cnf() in logic.py 



Converting sentences to clausal form 
Skolem constants and functions 

5. Eliminate existential quantification by introducing Skolem 
constants/functions 
(∃x)P(x) ⇒ P(C)  

 C is a Skolem constant (a brand-new constant symbol that is not 
used in any other sentence) 

(∀x)(∃y)P(x,y) ⇒ (∀x)P(x, f(x)) 
 since ∃ is within scope of a universally quantified variable, use a 
Skolem function f to construct a new value that depends on the 
universally quantified variable 

f must be a brand-new function name not occurring in any other 
sentence in the KB 

E.g., (∀x)(∃y)loves(x,y) ⇒ (∀x)loves(x,f(x))  
  In this case, f(x) specifies the person that x loves 
  a better name might be oneWhoIsLovedBy(x) 



Converting sentences to clausal form 
6. Remove universal quantifiers by (1) moving them all to the 

left end; (2) making the scope of each the entire sentence; 
and (3) dropping the “prefix” part 
Ex: (∀x)P(x) ⇒ P(x) 

7. Put into conjunctive normal form (conjunction of 
disjunctions) using distributive and associative laws 
(P ∧ Q) ∨ R ⇒ (P ∨ R) ∧ (Q ∨ R) 
(P ∨ Q) ∨ R ⇒ (P ∨ Q ∨ R) 

8. Split conjuncts into separate clauses 
9. Standardize variables so each clause contains only variable 

names that do not occur in any other clause 
 
 



An example 
(∀x)(P(x) → ((∀y)(P(y) → P(f(x,y))) ∧ ¬(∀y)(Q(x,y) → P(y))))  
2. Eliminate → 

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧ ¬(∀y)(¬Q(x,y) ∨ P(y))))  
3. Reduce scope of negation 

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃y)(Q(x,y) ∧ ¬P(y))))  
4. Standardize variables 

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃z)(Q(x,z) ∧ ¬P(z))))  
5. Eliminate existential quantification 

(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x)))))  
6. Drop universal quantification symbols 

(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x)))))  
 



Example 
7. Convert to conjunction of disjunctions 

(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ∧ (¬P(x) ∨ Q(x,g(x))) ∧ 
       (¬P(x) ∨ ¬P(g(x)))  

8. Create separate clauses 
¬P(x) ∨ ¬P(y) ∨ P(f(x,y))  
¬P(x) ∨ Q(x,g(x))  
¬P(x) ∨ ¬P(g(x))  

9. Standardize variables 
¬P(x) ∨ ¬P(y) ∨ P(f(x,y))  
¬P(z) ∨ Q(z,g(z))  
¬P(w) ∨ ¬P(g(w)) 



Unification 



Unification 
• Unification is a “pattern-matching” procedure  

– Takes two atomic sentences (i.e., literals) as input 
– Returns “failure” if they do not match and a 

substitution list, θ, if they do 
• That is, unify(p,q) = θ means subst(θ, p) = subst(θ, q) 

for two atomic sentences, p and q 
• θ is called the most general unifier (mgu)  
• All variables in the given two literals are implicitly 

universally quantified  
• To make literals match, replace (universally 

quantified) variables by terms 



Unification algorithm 
procedure unify(p, q, θ) 
       Scan p and q left-to-right and find the first corresponding 
          terms where p and q “disagree” (i.e., p and q not equal) 
       If there is no disagreement, return θ  (success!) 
       Let r and s be the terms in p and q, respectively, 
          where disagreement first occurs 
       If variable(r) then { 
          Let θ = union(θ, {r/s}) 
          Return unify(subst(θ, p), subst(θ, q), θ) 
       } else if variable(s) then { 
          Let θ = union(θ, {s/r}) 
          Return unify(subst(θ, p), subst(θ, q), θ) 
       } else return “Failure” 
     end 
 

See the function 
unify() in logic.py 



Unification: Remarks 
• Unify is a linear-time algorithm that returns the 

most general unifier (mgu), i.e., the shortest-length 
substitution list that makes the two literals match 

•  In general, there isn’t a unique minimum-length 
substitution list, but unify returns one of minimum 
length 

• Common constraint: A variable can never be 
replaced by a term containing that variable 
Example: x/f(x) is illegal.  
– This “occurs check” should be done in the above 

pseudo-code before making the recursive calls 



Unification examples 
•  Example: 

–  parents(x, father(x), mother(Bill))  
–  parents(Bill, father(Bill), y) 
–  {x/Bill,y/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill)) 

•  Example: 
–  parents(x, father(x), mother(Bill)) 
–  parents(Bill, father(y), z) 
–  {x/Bill,y/Bill,z/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill)) 

•  Example: 
–  parents(x, father(x), mother(Jane)) 
–  parents(Bill, father(y), mother(y)) 
–  Failure 



Resolution 
example 



Practice example 
 Did Curiosity kill the cat 

• Jack owns a dog 
• Every dog owner is an animal lover 
• No animal lover kills an animal 
• Either Jack or Curiosity killed the cat, 
who is named Tuna. 

•  Did Curiosity kill the cat? 



Practice example 
 Did Curiosity kill the cat 

•  Jack owns a dog. Every dog owner is an animal lover. No 
animal lover kills an animal. Either Jack or Curiosity killed 
the cat, who is named Tuna. Did Curiosity kill the cat? 

•  These can be represented as follows: 
A. (∃x) Dog(x) ∧ Owns(Jack,x) 
B. (∀x) ((∃y) Dog(y) ∧ Owns(x, y)) → AnimalLover(x) 
C. (∀x) AnimalLover(x) → ((∀y) Animal(y) → ¬Kills(x,y)) 
D. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna) 
E. Cat(Tuna) 
F. (∀x) Cat(x) → Animal(x)  
G. Kills(Curiosity, Tuna) 

GOAL 



• Convert to clause form 
A1. (Dog(D))  
A2. (Owns(Jack,D)) 
B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x)) 
C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b)) 
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna)) 
E. Cat(Tuna) 
F. (¬Cat(z), Animal(z)) 

• Add the negation of query:  
¬G: ¬Kills(Curiosity, Tuna) 

∃x Dog(x) ∧ Owns(Jack,x) 
∀x (∃y) Dog(y) ∧ Owns(x, y) → 

AnimalLover(x) 
∀x AnimalLover(x) → (∀y Animal(y) → 

¬Kills(x,y)) 
Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna) 
Cat(Tuna) 
∀x Cat(x) → Animal(x)  
Kills(Curiosity, Tuna) 



R1: ¬G, D, {}    (Kills(Jack, Tuna)) 
R2: R1, C, {a/Jack, b/Tuna}  (~AnimalLover(Jack),    

                                            ~Animal(Tuna)) 
R3: R2, B, {x/Jack}   (~Dog(y), ~Owns(Jack, y),   

     ~Animal(Tuna)) 
R4: R3, A1, {y/D}   (~Owns(Jack, D),                  

                                          ~Animal(Tuna)) 
R5: R4, A2, {}               (~Animal(Tuna)) 
R6: R5, F, {z/Tuna}   (~Cat(Tuna)) 
R7: R6, E, {}    FALSE 

The resolution refutation proof  



The proof tree 

¬G D 

C 

B 

A1 

A2 

F 

E 

R1: K(J,T) 

R2: ¬AL(J) ∨ ¬A(T) 

R3: ¬D(y) ∨ ¬O(J,y) ∨ ¬A(T) 

R4: ¬O(J,D), ¬A(T) 

R5: ¬A(T) 

R6: ¬C(T) 

R7: FALSE 

{} 

{a/J,b/T} 

{x/J} 

{y/D} 

{} 

{z/T} 

{} 



Resolution 
search 

strategies 



Resolution Theorem Proving as search 
• Resolution is like the bottom-up construction of a 

search tree, where the leaves are the clauses 
produced by KB and the negation of the goal 

• When a pair of clauses generates a new resolvent 
clause, add a new node to the tree with arcs directed 
from the resolvent to parent clauses 

• Resolution succeeds when node containing False is 
produced, becoming root node of the tree 

• Strategy is complete if it guarantees that empty 
clause (i.e., false) can be derived when it’s entailed 



Strategies 
• There are a number of general (domain-independent) 

strategies that are useful in controlling a resolution 
theorem prover 

• Well briefly look at the following: 
– Breadth-first 
– Length heuristics 
– Set of support 
– Input resolution 
– Subsumption 
– Ordered resolution 



Example 

1.  Battery-OK ∧ Bulbs-OK → Headlights-Work 

2.  Battery-OK ∧ Starter-OK → Empty-Gas-Tank ∨ Engine-Starts 

3.  Engine-Starts → Flat-Tire ∨ Car-OK 

4.  Headlights-Work 

5.  Battery-OK 

6.  Starter-OK  

7.  ¬Empty-Gas-Tank  

8.  ¬Car-OK  

9.  Goal: Flat-Tire ? 



Example 

1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 

2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 

3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 

4.  Headlights-Work 

5.  Battery-OK 

6.  Starter-OK  

7.  ¬Empty-Gas-Tank  

8.  ¬Car-OK  

9.  ¬Flat-Tire negated goal 



Breadth-first search 
•  Level 0 clauses are the original axioms and the negation of 

the goal 
•  Level k clauses are the resolvents computed from two 

clauses, one of which must be from level k-1 and the other 
from any earlier level 

•  Compute all possible level 1 clauses, then all possible level 
2 clauses, etc.  

•  Complete, but very inefficient 



BFS example 
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 
10.  ¬Battery-OK ∨ ¬Bulbs-OK 
11.  ¬Bulbs-OK ∨ Headlights-Work 
12.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Flat-Tire ∨ Car-OK 
13.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
14.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
15.  ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts 
16.  … [and we’re still only at Level 1!] 

1,4 
1,5 
2,3 
2,5 
2,6 
2,7 
 



Length heuristics 

• Shortest-clause heuristic:  
Generate a clause with the fewest literals first 

• Unit resolution:  
Prefer resolution steps in which at least one parent 
clause is a “unit clause,” i.e., a clause containing a 
single literal 
– Not complete in general, but complete for Horn 

clause KBs  



Unit resolution example 
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 
10.  ¬Bulbs-OK ∨ Headlights-Work 
11.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
12.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
13.  ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts 
14.  ¬Engine-Starts ∨ Flat-Tire 
15.  ¬Engine-Starts ¬ Car-OK 
16.  … [this doesn’t seem to be headed anywhere either!] 

1,5 
2,5 
2,6 
2,7 
3,8 
3,9 



Set of support 

• At least one parent clause must be the negation of 
the goal or a “descendant” of such a goal clause 
(i.e., derived from a goal clause) 

• When there’s a choice, take the most recent 
descendant 

• Complete, assuming all possible set-of-support 
clauses are derived  

• Gives a goal-directed character to the search (e.g., 
like backward chaining) 



Set of support example 
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 
10.  ¬Engine-Starts ∨ Car-OK 
11.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK 
12.  ¬Engine-Starts 
13.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK 
14.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Car-OK 
15.  ¬Battery-OK ∨ ¬Starter-OK ∨ Car-OK 
16.  … [a bit more focused, but we still seem to be wandering] 

9,3 
10,2 
10,8 
11,5 
11,6 
11,7 



Unit resolution + set of support example 
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 
10.  ¬Engine-Starts ∨ Car-OK 
11.  ¬Engine-Starts 
12.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank 
13.  ¬Starter-OK ∨ Empty-Gas-Tank 
14.  Empty-Gas-Tank 
15.  FALSE 
[Hooray! Now that’s more like it!] 

9,3 
10,8 
11,2 
12,5 
13,6 
14,7 



Simplification heuristics 
•  Subsumption: 

Eliminate sentences that are subsumed by (more 
specific than) an existing sentence to keep KB small 
–  If P(x) is already in the KB, adding P(A) makes no sense – 

P(x) is a superset of P(A) 
– Likewise adding P(A) ∨ Q(B) would add nothing to the KB 

•  Tautology:  
Remove any clause containing two complementary 
literals (tautology) 

•  Pure symbol: 
If a symbol always appears with the same “sign,” 
remove all the clauses that contain it 



Example (Pure Symbol) 

1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 



Input resolution 

• At least one parent must be one of the input 
sentences (i.e., either a sentence in the original KB 
or the negation of the goal)  

• Not complete in general, but complete for Horn 
clause KBs 

• Linear resolution 
– Extension of input resolution 
– One of the parent sentences must be an input sentence or 

an ancestor of the other sentence 
– Complete 



Ordered resolution 
• Search for resolvable sentences in order (left to 

right) 
• This is how Prolog operates 
• Resolve the first element in the sentence first 
• This forces the user to define what is important in 

generating the “code” 
• The way the sentences are written controls the 

resolution 


