
Logical
Inference 1
introduction

Chapter 9

Some material adopted from notes by Andreas
Geyer-Schulz,, Chuck Dyer, and Mary Getoor

Overview
• A: Model checking for propositional logic
• Rule based reasoning in first-order logic

– Inference rules and generalized modes ponens
– Forward chaining
– Backward chaining

• Resolution-based reasoning in first-order logic
– Clausal form
– Unification
– Resolution as search

•  Inference wrap up

Propositional Logic Model checking

• Given KB, does sentence S hold?
• Basically generate and test:

– Generate all possible models
– Consider models M in which KB is TRUE
– If ∀M S , then S is provably true
– If ∀M ¬S, then S is provably false
– Otherwise (∃M1 S ∧ ∃M2 ¬S): S is satisfiable

but neither provably true or provably false

From Satisfiability to Proof (1)

• To see if a satisfiable KB entails sentence S,
see if KB ∧ ¬S is satisfiable
– If it is not, then the KB entails S
– If it is, then the KB does not email S
– This is a refutation proof

• Consider the KB with (P, P=>Q, ~P=>R)
– Does the KB it entail Q? R?

Efficient PL model checking (1)
Davis-Putnam algorithm (DPLL) is generate-and-
test model checking with several optimizations:

– Early termination: short-circuiting of disjunction/
conjunction

– Pure symbol heuristic: symbols appearing only negated
or unnegated must be FALSE/TRUE respectively

e.g., in [(A∨¬B), (¬B∨¬C), (C∨A)] A & B are pure, C impure.
Make pure symbol literal true: if there’s a model for S, making
pure symbol true is also a model

– Unit clause heuristic: Symbols in a clause by itself can
immediately be set to TRUE or FALSE

Using the AIMA Code
python> python
Python ...
>>> from logic import *
>>> expr('P & P==>Q & ~P==>R')
((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q'))
False

>>>

expr parses a string, and
returns a logical expression

dpll_satisfiable returns a
model if satisfiable else False

The KB entails Q but does not
email R

Efficient PL model checking (2)
• WalkSAT is a local search for satisfiability: Pick

a symbol to flip (toggle TRUE/FALSE), either
using min-conflicts or choosing randomly

• …or you can use any local or global search
algorithm!

• There are many model checking algorithms and
systems
– See for example, MiniSat
– International SAT Competition (2003…2016)

AIMA KB Class >>> kb1 = PropKB()
>>> kb1.clauses
[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))
>>> kb1.clauses
[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False
>>> kb1.tell(expr('P'))
>>> kb1.clauses
[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))
{}
>>> kb1.retract(expr('P'))
>>> kb1.clauses
[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

PropKB is a subclass

A sentence is converted to
CNF and the clauses added

The KB does not entail Q

After adding P the KB does
entail Q

Retracting P removes it and
the KB no longer entails Q

Reminder: Inference rules for FOL

• Inference rules for propositional logic apply to
FOL as well
– Modus Ponens, And-Introduction, And-Elimination, …

• New (sound) inference rules for use with
quantifiers:
– Universal elimination
– Existential introduction
– Existential elimination
– Generalized Modus Ponens (GMP)

