First-Order
Logic: Review



First-order logic

e First-order logic (FOL) models the world in terms of
— Objects, which are things with individual 1dentities
— Properties of objects that distinguish them from others
— Relations that hold among sets of objects

— Functions, which are a subset of relations where there 1s
only one “value” for any given “input”

« Examples:
— Objects: Students, lectures, companies, cars ...

— Relations: Brother-of, bigger-than, outside, part-of, has-
color, occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...

— Functions: father-of, best-friend, second-half, more-than ...



User provides

« Constant symbols representing individuals 1n the
world
—Mary, 3, green

* Function symbols, map individuals to individuals
—father of(Mary) = John
—color of(Sky) = Blue

* Predicate symbols, map individuals to truth values
—greater(5,3)
— green((Grass)
—color(Grass, Green)



FOL Provides

* Variable symbols
—E.g., X, y, foo
 Connectives
—Same as in propositional logic: not (—),
and (A), or (v), implies (—), iff (<)
* Quantifiers
—Universal Vx or (Ax)
—Existential dx or (Ex)



Sentences: built from terms and atoms

* A term (denoting a real-world individual) 1s a
constant symbol, variable symbol, or n-place

function of n terms, €.g.:
—Constants: john, umbc

—Variables: x, y, z

—Functions: mother of(john), phone(mother(x))

e Ground terms have no variables 1n t

—Ground: john, father of(father of(jol
—Not Ground: father of(X)

1CIN

n))



Sentences: built from terms and atoms
* An atomic sentence (which has value true or
false) 1s an n-place predicate of n terms, e.g.:

—green(Kermit))
—between(Philadelphia, Baltimore, DC)
—loves(X, mother(X))

* A complex sentence 1s formed from atomic
sentences connected by logical connectives:

=P, PvQ, PAQ, P—Q, P<>Q
where P and Q are sentences



Sentences: built from terms and atoms

 quantified sentences adds quantifiers V and 3
—Vx loves(x, mother(x))
—dx number(x) A greater(x, 100), prime(x)

* A well-formed formula (wff) 1s a sentence
containing no “free” variables, i.e., all
variables are “bound” by either a universal or
existential quantifiers

(Vx)P(x,y) has x bound as a universally
quantified variable, but y 1s free



A BNF for FOL

S := <Sentence> ;

<Sentence> := <AtomicSentence> |
<Sentence> <Connective> <Sentence> |
<Quantifier> <Variable>,... <Sentence> |
"NOT" <Sentence> |

"(" <Sentence> ")";
<AtomicSentence> := <Predicate> " (" <Term>, ... ")" |
<Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")" |
<Constant> |
<Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;

<Function> := "Mother" | "LeftLegOf" | ... ;



Quantifiers

* Universal quantification

—(Vx)P(x) means P holds for all values of x
in domain associated with variable

—E.g., (Vx) dolphin(x) — mammal(x)
* Existential quantification

—(dx)P(x) means P holds for some value of x
in domain associated with variable

—E.g., (3x) mammal(x) A lays eggs(x)
—Thais lets us make a statement about some
object without naming 1t



Quantifiers (1)

» Universal quantifiers often used with implies to
form rules:
(Vx) student(x) — smart(x) means " All students are
smart”
» Universal quantification rarely used to make
blanket statements about every individual in the
world:

(Vx) student(x) A smart(x) means " Everyone in the
world is a student and is smart”



Quantifiers (2)

» Existential quantifiers usually used with “and”
to specify
a list of properties about an individual:

(3x) student(x) A smart(x) means ~ There is a student
who is smart”

« Common mistake: represent this in FOL as:
(2x) student(x) — smart(x)

* What does this sentence mean?
—79



Quantifier Scope

* FOL sentences have structure, like programs
* In particular, the variables 1n a sentence have a scope
* For example, suppose we want to say
—“everyone who is alive loves someone”
—(Vx) alive(x) — (dy) loves(x,y)
» Here’s how we scope the variables

(Vx) alive(x) — (dy) loves(x,y)

Scope of x
—— ScOpe of y



Quantifier Scope

* Switching order of universal quantifiers does not
change the meaning

— (Vx)(Vy)P(x,y) « (Vy)(VX) P(x,y)
— “Dogs hate cats” (i.e., “all dogs hate all cats”)

* You can switch order of existential quantifiers
— (@X)@y)P(x,y) < (Ay)3x) P(x,y)
— “A cat killed a dog”

* Switching order of universal and existential
quantifiers does change meaning:
— Everyone likes someone: (Vx)(dy) likes(x,y)
— Someone is liked by everyone: (dy)(Vx) likes(x,y)



Procedural example 1
def verify1():

# Everyone likes someone: (Vx)(dy) likes(x,y)
for x 1n people():
found = False

for y in people():
it likes(x,y): Every person has at
found = True least one individual that
they like.
break €y e

1f not Found:
return False

return True



Procedural example 2
def verify2():

# Someone is liked by everyone: (Iy)(Vx) likes(x,y)
for y 1 people():
found = True

for x 1n people():
if not likes(x,y): There is a person who is
found = False liked by every person in
the universe.
break
if found
return True

return False



Connections between VY and 3

* We can relate sentences involving V and 3 using
extensions to De Morgan’s laws:

1.(Vx) =P(x) & =(dx) P(x)

2.-(Vx) P < (dx) =P(x)

3.(Vx) P(x) « = (Ix) =P(x)

4.(3x) P(x) < =(Vx) =P(x)
* Examples

1. All dogs don’t like cats «» No dogs like cats
2. Not all dogs dance < There is a dog that doesn’t dance

3. All dogs sleep <> There 1s no dog that doesn’t sleep
4. There 1s a dog that talks <» Not all dogs can’t talk



Quantified inference rules

* Universal instantiation
—Vx P(x) ... P(A) #where A is some constant

» Universal generalization

—P(A) A P(B) ... .. VX P(x) #if AB... enumerate all
# individuals

 Existential instantiation  __qyo1em* constant F

. F must be a “new” constant not
Ix P(X) e P(F) appearing in the KB

* Existential generalization

—P(A) .. dx P(x)
* After Thoralf Skolem




Universal instantiation
(a.K.a. universal elimination)

o [f (Vx) P(x) is true, then P(C) is true, where
C 1s any constant in the domain of x, e.g.:
(Vx) eats(John, x) =
cats(John, Cheesel8)

 Note that function applied to ground terms i1s
also a constant

(Vx) eats(John, x) =
eats(John, contents(Box42))



Existential instantiation
(a.Kk.a. existential elimination)

e From (3dx) P(x) infer P(c), e.g.:
— (dx) eats(Mikey, x) — cats(Mikey, Stuff345)
* The variable 1s replaced by a brand-new constant
not occurring in this or any sentence in the KB

* Also known as skolemization; constant 1s a skolem
constant

 We don’t want to accidentally draw other inferences
about 1t by introducing the constant

 Can use this to reason about unknown objects, rather
than constantly manipulating existential quantifiers



Existential generalization
(a.k.a. existential introduction)

o [f P(¢) 1s true, then (3dx) P(x) is inferred, e.g.:
Eats(Mickey, Cheesel8) =
(dx) eats(Mickey, x)

 All instances of the given constant symbol
are replaced by the new variable symbol

* Note that the variable symbol cannot already
exist anywhere in the expression



Translating English to FOL

Every gardener likes the sun
Vx gardener(x) — likes(x,Sun)
You can fool some of the people all of the time
dx Vt person(x) A time(t) — can-fool(x, t)
You can fool all of the people some of the time
dt time(t) A VX person(x) — can-fool(x, t) No‘$2posfsible
readings o

Vx person(x) — dt time(t) Acan-fool(x, t) NL sentence

All purple mushrooms are poisonous
Vx (mushroom(x) A purple(x)) — poisonous(x)



Translating English to FOL

No purple mushroom is poisonous (two ways)
- dx purple(x) A mushroom(x) A poisonous(x)
Vx (mushroom(x) A purple(x)) — —poisonous(x)

There are exactly two purple mushrooms
dx dy mushroom(x) A purple(x) A mushroom(y) A
purple(y) A =(x=y) A Vz (mushroom(z) A purple(z))
— ((x=2) v (y=2))

Obama is not short
- short(Obama)



Logic and People

“Logic—the last refuge of a scoundrel”

» People can easily be confused by logic
» And are often suspicious of it, or give it too much weight

23



Monty Pythom'm | R
| R |

:
| :

)" y
A
I . / \
A ',1‘\\7’
! }/ ‘ ',}
¥ 1 .
4 . ". ;

FIRST VILLAGER: We have found a witch. May we burn her?
ALL: A witch! Burn her!
BEDEVERE: Why do you think she 1s a witch?

SECOND VILLAGER: She turned me into a newt.

B: A newt?

V2 (after looking at himself for some time): 1 got better.

ALL: Burn her anyway.

B: Quiet! Quiet! There are ways of telling whether she is a witch.




B: Tell me... what do you do with witches?

ALL: Burn them!

B: And what do you burn, apart from witches?

V4: ...wood?

B: So why do witches burn?

V2 (pianissimo): because they’ re made of wood?
B: Good.

ALL: I see. Yes, of course.

25



B: So how can we tell if she is
made of wood?

V1: Make a bridge out of her.

B: Ah... but can you not also make
bridges out of stone?

ALL: Yes, of course... um... er...
B: Does wood sink in water?

ALL: No, no, 1t floats. Throw her
in the pond.

B: Wait. Wait... tell me, what also
floats on water?

ALL: Bread? No, no no. Apples...
gravy... very small rocks...

B: No, no, no,

26



(They all turn and look at Arthur. Bedevere looks up, very impressed.)
B: Exactly. So... logically...

V1 (beginning to pick up the thread): If she... weighs the same as a
duck... she’ s made of wood.

B: And therefore?
ALL: A witch!




Fallacy: Affirming the conclusion
Vx witch(x) — burns(x)
Vx wood(x) — burns(x)




Monty Python Near-Fallacy #2

wood(x) — can-build-bridge(x)

. can-build-bridge(x) — wood(x)

* B: Ah... but can you not also make bridges out of
stone?

29



Monty Python Fallacy #3

Vx wood(x) — floats(x)
Vx duck-weight (x) — floats(x)



Monty Python Fallacy #4

Vz light(z) — wood(z)
light(W)

witch(W) — wood(W) % applying universal instan.
% to fallacious conclusion #1

31



Simple genealogy KB in FOL

Design a knowledge base using FOL that

— Has facts of immediate family relations, e.g.,
spouses, parents, etc.

— Defines of more complex relations
(ancestors, relatives)

— Detect contflicts, e.g., you are your own
parent

— Infers relations, e.g., grandparernt from
parent

— Answers queries about relationships between
people



How do we approach this?

* Design an 1nitial ontology of types, e.g.
—e.g., person, man, woman, gender

* Add general individuals to ontology, ¢.g.
—gender(male), gender(female)

* Extend ontology be defining relations, e.g.
— spouse, has child, has parent

» Add general constraints to relations, e.g.
—spouse(X,Y)=>~X=Y
—spouse(X,Y) => person(X), person(Y)

* Add FOL sentences for inference, e.g.
—spouse(X,Y) < spouse(Y,X)
—man(X) < person(X) Ahas_gender(X, male)




Simple genealogy KB in FOL

» Has facts of immediate family relations, e.g.
spouses, parents, etc.

* Has definitions of more complex relations
(ancestors, relatives)

» Can detect conflicts, €.g., you are your own
parent

 Can infer relations, e.g., grandparernt from
parent

* Can answer queries about relationships
between people



Example: A simple genealogy KB by FOL

* Predicates:

—parent(x, y), child(x, y), father(x, y), daughter(x, y),
etc.

—spouse(x, y), husband(x, y), wife(x,y)
—ancestor(Xx, y), descendant(x, y)
—male(x), female(y)
—relative(x, y)
* Facts:
—husband(Joe, Mary), son(Fred, Joe)
—spouse(John, Nancy), male(John), son(Mark, Nancy)
—father(Jack, Nancy), daughter(Linda, Jack)
—daughter(Liz, Linda)
—etc.




Example Axioms

(Vx,y) has parent(x, y) <> has_child (y, x)
(Vx,y) father(x, y) <> parent(x, y) A male(X) ;similar for mother(x,®)
(Vx,y) daughter(x, y) < child(x, y) A female(x) ;similar for son(x, y)
(Vx,y) husband(x, y) <> spouse(X, y) A male(x) ,similar for wife(x, y)
(Vx,y) spouse(X, y) <> spouse(y, X) ,;spouse relation is symmetric
(Vx,y) parent(x, y) — ancestor(x, y)

(Vx,y)(3dz) parent(x, z) A ancestor(z, y) — ancestor(x, y)

(Vx,y) descendant(x, y) <> ancestor(y, X)

(Vx,y)(dz) ancestor(z, X) A ancestor(z, y) — relative(x, y)

(Vx,y) spouse(x, y) — relative(x, y) ;related by marriage

(Vx,y)(dz) relative(z, x) A relative(z, y) — relative(x, y) ,transitive

(Vx,y) relative(x, y) < relative(y, X) ,symmetric



* Rules for genealogical relations

(Vx,y) parent(x, y) < child (y, x)
(Vx,y) father(x, y) <> parent(Xx, y) A male(x) ;similarly for mother(x, y)
(Vx,y) daughter(x, y) <> child(x, y) A female(x) ,similarly for son(x, y)
(Vx,y) husband(x, y) <> spouse(X, y) A male(X) ;similarly for wife(x, y)
(Vx,y) spouse(X, y) <> spouse(y, X) ,spouse relation is symmetric
(Vx,y) parent(x, y) — ancestor(x, y)
(Vx,y)(3dz) parent(x, z) A ancestor(z, y) — ancestor(X, y)
(Vx,y) descendant(x, y) <> ancestor(y, X)
(Vx,y)(3dz) ancestor(z, X) A ancestor(z, y) — relative(x, y)

;related by common ancestry
(Vx,y) spouse(x, y) — relative(x, y) ;related by marriage
(Vx,y)(3dz) relative(z, X) A relative(z, y) — relative(x, y) ,transitive
(Vx,y) relative(x, y) < relative(y, X) ;symmetric

* Queries
— ancestor(Jack, Fred) ; the answer is yes
— relative(Liz, Joe) ; the answer is yes

— relative(Nancy, Matthew) ,no answer, no under closed world assumption
— (dz) ancestor(z, Fred) A ancestor(z, Liz)



Axioms for Set Theory in FOL

. The only sets are the empty set and those made by adjoining something to a set:
Vs set(s) <=> (s=EmptySet) v (Ix,r Set(r) * s=Adjoin(s,r))

. The empty set has no elements adjoined to it:

~ 3x,s Adjoin(x,s)=EmptySet

. Adjoining an element already in the set has no effect:

Vx,s Member(x,s) <=> s=Adjoin(x,s)

. The only members of a set are the elements that were adjoined into it:

Vx,s Member(x,s) <=> 3dy,r (s=Adjoin(y,r) * (x=y v Member(x,r)))

. A set is a subset of another iff all of the 1st set’ s members are members of the 2nd:
Vs,r Subset(s,r) <=> (Vx Member(x,s) => Member(X,r))

. Two sets are equal iff each is a subset of the other:

Vs,r (s=r) <=> (subset(s,r) " subset(r,s))

. Intersection

Vx,s1,s2 member(X,intersection(S1,S2)) <=> member(X,s1) * member(X,s2)

. Union

dx,s1,s2 member(X,union(s1,s2)) <=> member(X,s1) v member(X,s2)



Semantics of FOL

* Domain M: the set of all objects in the world (of interest)
e Interpretation I: includes
— Assign each constant to an object in M
— Define each function of n arguments as a mapping M" =>M
— Define each predicate of n arguments as a mapping M® => {T, F}

— Therefore, every ground predicate with any instantiation will have a
truth value

— In general there’s an infinite number of interpretations because (M| 1s
infinite

* Define logical connectives: ~, A, v, =>, <=>as in PL
* Define semantics of (Vx) and (Ix)

— (Vx) P(x) is true iff P(x) is true under all interpretations
— (dx) P(x) is true iff P(x) is true under some interpretation



* Model: an interpretation of a set of sentences
such that every sentence 1s True

* A sentence is
—satisfiable 1f 1t 1s true under some interpretation
—valid 1f 1t 1s true under all possible interpretations

—inconsistent if there does not exist any
interpretation under which the sentence i1s true

* Logical consequence: S |= X 1f all models of S
are also models of X



Axioms, definitions and theorems

» Axioms: facts and rules that capture the (1mportant)
facts and concepts about a domain; axioms can be used
to prove theorems

— Mathematicians dislike unnecessary (dependent) axioms, 1.e.
ones that can be derived from others

— Dependent axioms can make reasoning faster, however
— Choosing a good set of axioms 1s a design problem

’

e A definition of a predicate is of the form “p(X) « ...’
and can be decomposed into two parts

7

— Necessary description: “p(x) — ...

77

— Sufficient description “p(x) < ...

— Some concepts have definitions (triangle) and some do not
(person)



More on definitions

Example: define father(x, y) by parent(x, y) and
male(X)

* parent(X, y) 1s a necessary (but not sufficient)
description of father(x, y)

father(x, y) — parent(x, y)

e parent(x, y) * male(x) * age(x, 35) 1s a sufficient (but
not necessary) description of father(x, y):

father(x, y) <= parent(x, y) * male(x) * age(x, 35)

e parent(x, y) * male(x) 1s a necessary and sufficient
description of father(x, y)

parent(x, y) ” male(x) < father(x, y)



More on definitions

S(x) 1s a P

necessary ) (Vx) P(x) => S(x)
condition of P(x) ()

S(x) 1s a S

sufficient ) (Vx) P(x) <= S(x)
condition of P(x) P

S(x) 1s a P

necessary and ) (Vx) P(x) <=> S(x)
sufficient —S(x)

condition of P(x)



Higher-order logic

* FOL only lets us quantify over variables, and
variables can only range over objects

« HOL allows us to quantify over relations, e.g.

“two functions are equal iff they produce the same
value for all arguments”

ViVg (f=g) < (Vxf(x) = g(x)
 E.g.: (quantify over predicates)
Vr transitive( r ) = (Vxyz) 1(x,y) A 1(y,z) — 1(X,2))

* More expressive, but undecidable, in general



Expressing uniqueness

 Often want to say that there 1s a single, unique syntactic

object that satisfies a condition e
 There exists a unique x such that king(x) 1s true
— dx king(x) A Vy (king(y) — x=y)
— dx king(x) A =3y (king(y) A x=y)
— 3! x king(x)
 “Every country has exactly one ruler”
— V¢ country(c) — 3! r ruler(c,r)
e Jota operator: v x P(x) means “the unique x such
that p(x) is true”

— “The unique ruler of Freedonia is dead”
— dead(uv x ruler(freedonia,x))



Notational differences

 Different symbols for and, or, not, implies, ...
—Vi=< Av-°D
—pv(q”r)
—p+(qQ*r)
* Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

* Lispy notations
(forall ?x (1implies (and (furry 7x)
(meows 7X)
(has 7x claws))

(cat 7x)))



(
A example of FOL in use E‘r‘

OWNL
 Semantics of W3C’s semantic web stack
(RDF, RDFS, OWL) is defined in FOL

 OWL Full 1s equivalent to FOL

* Other OWL profiles support a subset of FOL
and are more efficient

 However, the semantics of schema.org 1s
only defined 1n natural language text

e ...and Google’s knowledge Graph probably
(1) uses probabilities

47



FOL Summary

* First order logic (FOL) introduces predicates,
functions and quantifiers
* More expressive, but reasoning more complex
—Reasoning 1n propositional logic 1s NP hard, FOL 1s
semi-decidable
« Common Al knowledge representation language

—Other KR languages (e.g., OWL) are often defined by
mapping them to FOL

* FOL variables range over objects

—HOL variables range over functions, predicates or
sentences



