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CYC: A Large-Scale
Investment in Knowledge
Infrastructure
Douglas B. Lenat

Since 1984, a person-century of effort has gone into
building CYC, a universal schema of roughly 105 gener-
al concepts spanning human reality. Most of the time
has been spent codifying knowledge about these con-
cepts; approximately 106 commonsense axioms have
been handcrafted for and entered into CYC’s knowl-
edge base, and millions more have been inferred and
cached by CYC. This article examines the fundamental

assumptions of doing such a large-scale project, reviews the technical lessons
learned by the developers, and surveys the range of applications that are or
soon will be enabled by the technology.

One can think of CYC as an expert system with a domain that spans all
everyday objects and actions. For example:

• You have to be awake to eat.
• You can usually see people’s noses, but not their hearts.
• Given two professions, either one is a specialization of the other or else they

are likely to be independent of one another.
• You cannot remember events that have not happened yet.
• If you cut a lump of peanut butter in half, each half is also a lump of peanut

butter; but if you cut a table in half, neither half is a table.

Such assertions are unlikely to be published in textbooks, dictionaries,
magazines, or encyclopedias, even those designed for children. These asser-
tions, and a million more like them, embody knowledge the CYC authors
safely assume is already known about the world. These assertions are so fun-
damental that stating them to another person, aloud or in print, would likely
be confusing or insulting.

Such a commonsense substrate could serve as a standard ontology
underlying the World-Wide Web and electronic commerce. As a universal
schema, it could help standardize—and make more efficient—information
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retrieval, integration, and consistency-checking.
Prototype CYC-enabled applications of these opera-
tions are working; they and others are discussed in
this article’s Commercial Applications section.

To build CYC, we eschewed such free-lunch tactics
as natural language understanding (NLU) and auto-
matic machine learning (ML). We figured that
progress in these two areas would generate demand
for a system much like CYC is meant to be. For exam-
ple, how can one determine the antecedent of “they”
in “The police arrested the demonstrators because
they feared violence” versus “The police arrested the
demonstrators because they advocated violence”?
How can one tell which meaning of “pen” is intended
in “The box is in the pen”  and “The pen is in the
box”? How can one tell that, when translating the fol-
lowing sentence into Japanese, the first “water” is cold
water and the second is hot water: “Mary poured the
water into the teakettle; when it whistled, she poured
the water into her teacup”? (Japanese does not pro-
vide a single word for liquid water.)

M
oreover, statistics, coloca-
tion, and frequency do not
resolve such questions. But
the task goes from impossi-
ble to trivial if one already
knows a few things about
boxes and pens, police and
demonstrators, and water

and teakettles. The same sort of chicken-and-egg rela-
tionship characterizes CYC and ML because learning
occurs at the fringe of what one already knows.

Therefore, in the early 1980s, when the rest of the
world was so enthusiastic about NLU, ML, and AI in
general, we were pessimistic [2]. We concluded the
only way out of this codependency would be to prime
the pump by manually crafting a million axioms cover-
ing an appreciable fraction of the required knowledge.
That knowledge would serve as a critical mass, enabling
further knowledge collection through NLU and ML,
beginning in the mid-1990s. Mary Shepherd and I
embarked on that task in 1984, knowing we had little
chance of success, but seeing no alternative but to try.

We knew codifying common sense meant han-
dling causality, time, space, substances, intention,
contradiction, uncertainty, belief, emotions, plan-
ning, and so on. More precisely, we had to figure out
how to represent the common cases of these phe-
nomena, how to reason about them efficiently, and
how to formulate sets of categories and attributes
with which to carve up the world. Building something
like CYC also forced us to develop methods and tools
for browsing and editing immense knowledge bases,
for keeping dozens of knowledge enterers from los-
ing their focus, and for enabling would-be applica-
tion builders to use CYC without having to spend
months coming up to speed on its internal workings.

Due to the imagination and hard work of key indi-
viduals who joined us during this enterprise—Karen

Pittman, R. Guha, Nick Siegel, Kathy Burns, Keith
Goolsbey, Ken Murray, David Gadbois, and others—
we are now moving toward the transition point where
NLU and ML are supported. The rest of the world is
disillusioned and pessimistic about symbolic AI, but
ironically, as CYC reaches closure, our hopes for NLU
and ML in the next 10 years are very high.

The following sections give some details about the
technical problems that arose during CYC develop-
ment and how they influenced the system’s knowl-
edge representation and reasoning. We then turn
our attention to CYC applications.

Technical Lessons Learned
One thing to note about the five everyday assertions
listed earlier is that they are true only as a default. In
some contexts—such as during heart surgery—some
of them are plain wrong. Each assertion should be
considered true only in certain contexts, which are
distinguished by the assumptions they make. For
example, one context assumes all the people involved
are more or less healthy, sane, non-babies, and sight-
ed; that there is adequate light; and so on.

Different contexts make different assumptions and
therefore involve different assertions that are true.
For example, in the context of total darkness, there
might be an assertion like: “You cannot see anything.”
This superficially contradicts the assertion about
being able to see other people’s noses, but there is no
real contradiction. Why? One can import assertions
from one context to another, but one must then col-
lect and import assumptions not shared by the two
contexts. Some context assumptions may be
extreme—like a young child’s model of the physical
world or a fictional context in which vampires prowl
the night. Some contexts may be ephemeral—like
the context of a single point in a conversation when
indexicals like “now” and pronouns like “it” and “he”
have unambiguous meanings.

CYC puts each of its assertions into one or more
explicit contexts. One can think of these as articulat-
ed plates in a suit of armor. Each of them is relatively
small, solid, and flat and meets others at a small num-
ber of individually fashioned joints, but the whole suit
of plate mail is strong and flexible.

A
nother issue is illustrated by the
question: How likely is it that
one can see another person’s
nose yet cannot see the other
person’s heart? It is tempting to
make up numeric certainty fac-
tors (like 0.99982) for each
assertion. But we do not really

know these probabilities precisely, only that they are
high. Builders of expert systems recognize this trap—
encoding information into the fourth and fifth deci-
mal places of numeric certainty factors to have one
rule slightly override another or to have one assertion
be slightly more likely than another. Since all rational
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numbers are commensurable, this scheme becomes
unmanageable when there are dozens of people mak-
ing up numbers for hundreds of thousands of rules. 

CYC therefore eschews numeric certainty factors,
except in cases where statistics are known. Instead,
each assertion is assumed true by default, and addi-
tional meta-level assertions might state that “Asser-
tion A is less likely than Assertion B.” Reasoning is
done through argumentation, not by logic (propa-

gating absolute True and False) nor by arithmetic
(propagating and combining numeric certainty fac-
tors). Instead, pro and con arguments are marshalled
and compared [1, 3].

Another point is that a standard sort of frame-and-
slot language proved to be awkward in various contexts:

• For stating ternary and higher relations (e.g.,
“between” in an assertion like “Austin is between
Dallas and San Antonio”);

• For stating modals (e.g., “believes” and “wanted”
in an assertion like “Israel believes the U.S. wanted
Arafat to receive the Nobel Peace Prize”); 

• For stating quantifiers (e.g., “Every married person
married someone”); 

• For stating assertions about other assertions (e.g.,
“Most of the rules about meningitis were entered
by an expert in 1975,” or “The assertion about see-
ing noses is more often violated than the one
about seeing hearts”); and

• For explicit contextualizing (e.g., “While driving a
car, eye contact is not socially required during
conversations”). 

Such experiences caused us to move toward a
more expressive language, namely first order predi-
cate calculus with a series of second-order extensions
[1, 8]. This move illustrates two important points
about doing large-scale AI: 

• One must not shrink from making changes, even
fundamental changes, if the alternative is the sacri-
fice of the system’s future stability and robustness.

• One should design the system, make changes, and
be formal for pragmatic reasons rather than aes-
thetic reasons.

We entered approximately 106 general assertions
into CYC’s knowledge base, using a vocabulary with
approximately 105 atomic terms, or basic concepts.
The hundreds of long-lived contexts in the current
system involve contexts most of us share and that are
likely to remain useful in the system for years to
come. The exact number of concepts and the exact

number of assertions are not important.
Why is the precise number of assertions a red her-

ring? CYC knows about a thousand different occupa-
tions. CYC includes an assertion about professions
being more or less disconnected, plus a thousand
rules of the form “Surgeons are doctors,” and
“Masons are builders.” This is much more parsimo-
nious than having another million rules of the form
“Surgeons are rarely masons,” and “Doctors are

rarely plumbers.” Our goal was neither to have as
many axioms as possible nor as few axioms as possi-
ble, but to build CYC as rapidly as possible. This
motivation caused us to lean toward the as-few-as-
possible end of this spectrum, without worrying
about occasional redundancy. This pragmatism is
crucial to a successful large-scale AI effort.

Why is the precise number of concepts or terms a
red herring? CYC has a set of functions that enable
one to make assertions about non-atomic terms. For
example, one can refer to LiquidForm(nitrogen)
without having to create a new term like liquid-nitro-
gen. As with assertions, our goal is not to have as
many terms as possible nor to have a provably mini-
mal set of terms, but just enough, and no more.

There are dozens of general contexts in CYC
today, including substances and events occurring in
time, but almost all the day-to-day action is in creating
and extending hundreds of much more specialized
contexts. These new contexts deal with such diverse
situations as a wedding, an office environment, a
camping trip, a business meeting, driving a car, shop-
ping in a supermarket, and the personnel depart-
ment of a company. This organization is reminiscent
of Schankian scripts; we imagine that if Schank had
persevered with his 1970s paradigm, he would have
constructed something like CYC long before we did.

Commercial Applications
This section reviews a much broader spectrum of
applications—most not yet under way—than we pre-
viously reviewed in Communications [1].

The applications in the first group focus on infor-
mation retrieval, with CYC helping in various ways.
For example, consider stating a detailed user model,
including assertions about the user’s hobbies, job,
family status, and values; areas of expertise, igno-
rance, interest, and disinterest; and personality.
This is not a new idea, but user models are general-
ly limited to almost trivial preference lists, filling in
blanks in questionnaires. CYC can help because of
its expressiveness—through both its syntax and its
large universal schema of terms. It also enables the
statement of rules about how these user-model state-
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ments influence the choice of what to present and
how to present it.

The issue of how to present it includes much more
than modality and formatting, also covering the level
of terseness, the level of sophistication, the adding or
paring of particular background information, the
sequencing of the information, the choice of what to
highlight, and more. CYC should also enable more
context-sensitive menuing and preemptive guessing
of what the user is likely to want to see and do next. 

This leads to the issue of what to present, includ-
ing much more than just selecting particular articles
or MOSAIC pages or messages. It incorporates the
dynamic selection of specific sentence-sized pieces of
information, depending on the user model. In an
extreme case, one might eventually build a self-pro-
gramming VCR the user would only occasionally have
to reward and punish, but never have to set. Decision
theory and other technologies would also be at work
in such a device, but their strengths and weaknesses
differ from those of CYC, and it seems likely the most
powerful system will be some sort of hybrid.

CYC can be used as a substrate—a semantic back-
bone—for dynamically semiautomatically linking mul-
tiple heterogeneous external information sources,
such as remote, third-party-maintained databases,
spreadsheets, text news feeds, and more. CYC serves as
a universal schema to enable such integration and as
an automatic learner of the meaning of alien schemas,
inducing what a particular field called INC means in a
particular schema. “Semiautomatic” means it includes
the possibility that the user will be asked to verify or
disambiguate interpretations of a given relation, of a
term in a cell, and of other parameters.

The important point is that users will be able to
find information without having to be familiar with
the precise way the information is stored, either
through field names or by knowing which databases

exist and can be tapped. For example, one could use
CYC beneath a spreadsheet-to-database-like interface
as follows: The user starts sketching in column head-
ings and cell entries in an initially blank table. The
system gradually fleshes out the table—automatically—
as it figures out what the user means by each row and
especially by each column. The system then goes off
to various databases to find cell entries for the new
table or, more interestingly, pieces of information
from which it can infer cell entries for the new table.
A prototype is in operation.

If the content of the information is understood,
the information presented to the user can be more
like a symbolic spreadsheet than like a static display.
For example, certain words may be highlighted, and
users can change the words and watch the conse-

quences of the changes percolate through their cur-
rent pageful of displayed information. What happens
when the user changes a date, a person’s name, or
other information is that CYC goes off and infers the
other changes to make. This function leads to anoth-
er area of CYC application—dealing with the pro-
cessing of structured data extracted from
spreadsheets, databases, and other sources.

CYC technology can examine the retrieved data,
recognizing inconsistencies, contradictions with specific
data from other sources, and violations of common
sense. For example, in one personnel table, employees
might appear to be hired before they were born and
might be listed as their own emergency contacts. More-
over, across tables, employees might appear to have
multiple spouses at the same time, might appear not to
age for five years, and might appear to be charging din-
ner in several different cities on the same night. A pro-
totype of this application is in operation.

CYC should also increase the functional richness
and power of word processors. For example, if a word
is spelled incorrectly but the new spelling happens to
be a valid word and grammatically correct, a word
processor has difficulty flagging it as an error. But
with CYC examining the sentences, some of these
errors can be caught. For example, in the sentence
“Huck thought it felt good to rest his bare toes on the
warm rough wooden sock,” we (and CYC) can guess
that the user most likely just hit “s” instead of “d” and
meant dock, not sock, despite the high statistical co-
occurrence of sock and toes.

The same approach improves grammar checking—
to allow a larger set of nongrammatical but compre-
hensible sentences. If CYC can understand what the
user probably meant, so can another human. 

A decade from now, CYC could help enable a
whole new sort of checking—content-checking. For
example, if an author promises, “Later, we will

address . . .” but never delivers, the system could high-
light the broken promise. If an author includes spe-
cific data in a document, presumably presented as up
to date (not tagged as, say, 1992 data), the system
could go out to online databases, spreadsheets, the
World-Wide Web, and other sources, offering to
update the article with more recent data if available
and check earlier time-dated data if still available.

Another use of CYC in word processing is to offer
to flesh out incomplete (even outlined) sentences
and paragraphs and sections. This can be done today
with legalese boilerplate, but tomorrow it may be
done with common sorts of mail and email corre-
spondence, and the day after (early next century)
with much less constrained sorts of documents. 

A nearer-term use of CYC would be to find and flesh
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out incomplete bibliographic references. This ties back
to the first application area—information retrieval—
this time enabling creation of a semantic file system in
which files are indexed not just by a few attributes and
hierarchical links, but through inferences that match
the file’s caption to the user’s current query or task.

A
nother major application area for
CYC will be simulations. Users will
demand ever greater fidelity of
behavior of simulated intelligent
agents, just as they have continu-
ally demanded ever greater fideli-
ty  of  physical  behavior  of
simulated tangible objects—in

games, in training simulations, and in other programs.
Eventually, this demand will flatten out near what a per-
son knows and how a person or organization reacts. 

In a role-playing game, the computer-run characters
should not have trivially predictable daily routines or
conversations limited to revealing clues to the user.
Instead, they should have hobbies, jobs, social cliques,
chores, memories, and lots of factual knowledge about
their lives and their surroundings. They should also
subtly change moods with every interchange they have
with the user and with other simulated people and
organizations. The knowledge we put into CYC is a nec-
essary component of such a function; the knowledge we
will add to CYC is close to a sufficient component.

Even if we focus on natural language input pro-
vided by the user, innumerable cases will be ambigu-
ous unless the user has access to CYC’s knowledge.
For example, if, in an air traffic control training sim-
ulation, the user asks, “What is Flight 803’s destina-
tion?” only context and common sense—or
preconceived tinkering—will reveal whether the
question involved today’s particular airplane (just
diverted to O’Hare) or the scheduled daily route for
planes with this flight number. Context and com-
mon sense may be needed to solve the simpler prob-
lem of whether the answer should be the name of a
runway, an airport, a city, or a country.

It is worth mentioning that CYC can help increase
the accuracy of speech recognition and NLU under-
standing systems. For example, CYC could be applied
after statistics and natural language processing have
finished, performing a final sanity check on the sup-
posedly understood spoken sentence. Can some
adjectives or prepositional phrases make the utter-
ance more sensible if they modify something other
than what the parser claims they modify? Does some
phonetically close word make the utterance more
meaningful than the current best guess? Recall the
earlier sock and dock example. Are some pronoun
antecedents clear only because of common sense?
Recall the earlier police and demonstrators example.

CYC can also be used to extend the functionality of
email in the following way. Imagine smart routing of
email based on user models, as well as on (partial)
understanding of the content of the message. To speed

it along, CYC could semiautomatically generate a cap-
tion for each message, and then have the user verify the
caption (and edit, if necessary). The captions could
also be used for retrieving relevant past messages.

CYC could also support such applications as direct
marketing, smart corporate yellow pages, and machine
translation [4]. In our 1994 article in Communications,
we detailed the most well developed CYC applications,
including semantic retrieval of captioned images [1]. 

Conclusions
By codifying commonsense knowledge, we have in
effect been automating the white space in documents.
We addressed this task reluctantly, however, after it was
clear that AI technologies, specifically for NLU and
ML, would probably never scale up. Only a large-scale
paradigm-breaking effort could surmount the barriers.

Several technical problems were encountered and
addressed, several applications are now under way,
and many more are ripe for attack.

The system’s technical history contains several
hurdles we overcame. For example, all the assertions
had to first be decontextualized as much as possible
and dumped into a large common pool. Eventually,
we gave CYC’s representation language a construc-
tion for explicitly tagging each assertion with the
context(s) in which it was true. Articulation axioms
map between contexts, and nonshared assumptions
are explicitly added to an assertion when it is import-
ed from one context to another. Each context is a
first-class CYC object, about which assertions can be
made. Some of these assertions list the assumptions
of the context; some list the contents of the context
(assertions true in that context); and some relate
one context to another.

Instead of trying to find a single, general solution
for problems that have plagued AI researchers for
four decades and philosophers for four millennia—-
including time, space, causality, modals, and sub-
stances—-we sought to build a set of micro-theories
that together cover the common cases of each prob-
lem. For example, several models of time and tempo-
ral reasoning are included. Each micro-theory
inhabits its own context.

O
riginally, each assertion was
given a numeric certainty fac-
tor. Eventually, we adopted a
much more symbolic scheme.
Now, most assertions are
default-true, and there are
explicit assertions like “X is
more likely than Y.” Each

assertion is a first-class CYC object, about which other
assertions can be made.

Originally, we tried to make the usual sort of trade-
off between expressiveness and efficiency through a
conventional frame language. We eventually gave up
completeness of inference in return for expressive-
ness and efficiency. The basic language is expressive
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and formal, involving first-order predicate calculus
plus ZF set theory, meta-level assertions, contexts,
and modal operators. Also included are special-pur-
pose representations, reasoning algorithms, and
heuristics that identify situations in which such short-
cuts can be used. We separated the epistemological
level (what the system knows) from the heuristic level
(how it efficiently reasons with and about what it
knows) both conceptually and in code.

We pursued a large number of CYC applications,
several demonstrable at least at the prototype stage
today. Even for applications only in the planning stage,
we can reel off reasons why users need commonsense
knowledge not found in any dictionary, encyclopedia,
newspaper, textbook, database, or other repository.

Is CYC necessary? How far would a user get with
something simpler than CYC but that lacks everyday
commonsense knowledge? Nobody knows; the ques-
tion will be settled empirically. Our guess is most of
these applications will eventually tap the synergy in a
suite of sources (including neural nets and decision
theory), one of which will be CYC. 
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