Bayesian Reasoning Chapter 13

Thomas Bayes, 1701-1761

Today's topics

- Review probability theory
- Bayesian inference
 - -From the joint distribution
 - -Using independence/factoring
 - -From sources of evidence
- Naïve Bayes algorithm for inference and classification tasks

Many Sources of Uncertainty

- Uncertain inputs -- missing and/or noisy data
- Uncertain knowledge
 - Multiple causes lead to multiple effects
 - -Incomplete enumeration of conditions or effects
 - -Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - -Abduction and induction are inherently uncertain
 - Default reasoning, even deductive, is uncertain
 - -Incomplete deductive inference may be uncertain
 - Probabilistic reasoning only gives probabilistic results

Decision making with uncertainty

Rational behavior:

- For each possible action, identify the possible outcomes
- Compute the **probability** of each outcome
- Compute the **utility** of each outcome
- Compute the probability-weighted (expected) utility over possible outcomes for each action
- Select action with the highest expected utility (principle of Maximum Expected Utility)

Consider

- Your house has an alarm system
- It should go off if a burglar breaks into the house
- It can go off if there is an earthquake
- How can we predict what's happened if the alarm goes off?

Probability theory 101

• Random variables

– Domain

• Atomic event:

complete specification of state

• Prior probability:

degree of belief without any other evidence or info

Joint probability: matrix of combined probabilities of set of variables

- Alarm, Burglary, Earthquake
- Boolean (like these), discrete, continuous
- Alarm=T^Burglary=T^Earthquake=F alarm ^ burglary ^ ¬earthquake
- P(Burglary) = 0.1
 P(Alarm) = 0.1
 P(earthquake) = 0.000003
- P(Alarm, Burglary) =

	alarm	−alarm
burglary	.09	.01
¬burglary	.1	.8

Probability theory 101

	alarm	−alarm
burglary	.09	.01
¬burglary	.1	.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:
 - $P(a | b) = P(a \land b) / P(b)$
 - P(b): normalizing constant
- Product rule:
 - $P(a \land b) = P(a | b) * P(b)$
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - $P(B) = \Sigma_a P(B | a) P(a)$ (conditioning)

- P(burglary | alarm) = .47
 P(alarm | burglary) = .9
- P(burglary | alarm) =
 P(burglary ^ alarm) / P(alarm)
 = .09/.19 = .47
- P(burglary ^ alarm) =
 P(burglary | alarm) * P(alarm)
 = .47 * .19 = .09
- P(alarm) =
 P(alarm ∧ burglary) +
 P(alarm ∧ ¬burglary)
 = .09+.1 = .19

Example: Inference from the joint

	ala	rm	−alarm	
	earthquake ¬earthquake		earthquake	
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

P(burglary | alarm) = α P(burglary, alarm)

= α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake) = α [(.01, .01) + (.08, .09)] = α [(.09, .1)]

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, $\alpha = 1/(.09+.1) = 5.26$ (i.e., P(alarm) = $1/\alpha = .19 - quizlet$: how can you verify this?)

P(burglary | alarm) = .09 * 5.26 = .474

P(¬burglary | alarm) = .1 * 5.26 = .526

Consider

- A student has to take an exam
- She might be smart
- She might have studied
- She may be prepared for the exam
- How are these related?

p(smart ∧	p(smart ∧		⊐ Sr	nart
study ^ prep)	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

p(smart ∧	smart		¬ smart	
study ^ prep)	study	−study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

p(smart) = .432 + .16 + .048 + .16 = 0.8

p(smart ∧	SI	mart	⊐ Sr	nart
study ∧ prep)	study	¬ study	study	¬study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

p(smart ∧	smart		smart	
study ^ prep)	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- What is the prior probability of *smart*?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given study and smart?
- p(study) = .432 + .048 + .084 + .036 = **0.6**

p(smart ∧	p(smart ^		⊐ Sr	nart
study ^ prep)	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

p(smart ∧	smart		¬smart	
study ^ prep)	study	¬ study	study	¬study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given *study* and *smart*?

p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study)
= .432 / (.432 + .048)
= 0.9
15

Independence

- When variables don't affect each others' probabilities, we call them independent, and can easily compute their joint and conditional probability: Independent(A, B) → P(A∧B) = P(A) * P(B) or P(A|B) = P(A)
- {moonPhase, lightLevel} might be independent of {burglary, alarm, earthquake}
 - Maybe not: burglars may be more active during a new moon because darkness hides their activity
 - But if we know light level, moon phase doesn't affect whether we are burglarized
 - If burglarized, light level doesn't affect if alarm goes off
- Need a more complex notion of independence and methods for reasoning about the relationships

p(smart ^	smart		¬ smart	
study ∧ prep)	study	¬ study	study	¬study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- -Q1: Is *smart* independent of *study*?
- -Q2: Is *prepared* independent of *study*? How can we tell?

p(smart ∧	smart		¬ smart	
study ^ prep)	study	¬ study	study	¬study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

- You might have some intuitive beliefs based on your experience
- You can also check the data

Which way to answer this is better?

p(smart ∧	smart		¬ smart	
study ^ prep)	study	− study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

Q1 true iff p(smart|study) == p(smart)

p(smart|study) = p(smart,study)/p(study)
= (.432 + .048) / .6 = 0.8
0.8 == 0.8, so smart is independent of study

p(smart ^ study ^ prep)	smart		¬ smart	
	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

- What is prepared?
- •Q2 true iff

p(smart ^ study ^ prep)	smart		¬ smart	
	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

Q2 true iff p(prepared|study) == p(prepared) p(prepared|study) = p(prepared,study)/p(study) = (.432 + .084) / .6 = .86

0.86 ≠ 0.8, so prepared not independent of study

Conditional independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) * P(B)$; equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are conditionally independent given C if
 P(A \wedge B | C) = P(A | C) * P(B | C)
- This lets us decompose the joint distribution:
 P(A ^ B ^ C) = P(A | C) * P(B | C) * P(C)
- Moon-Phase and Burglary are *conditionally independent given* Light-Level
- Conditional independence is weaker than absolute independence, but useful in decomposing full joint probability distribution

Conditional independence

- Intuitive understanding: conditional independence often arises due to causal relations
 - Moon phase causally effects light level at night
 Other things do too, e.g., street lights
- For our burglary scenario, moon phase doesn't effect anything else
- Knowing light level means we can ignore moon phase in predicting whether or not alarm suggests we had a burglary

Bayes' rule

Derived from the product rule:

- C is a cause, E is an effect
- -P(C, E) = P(C|E) * P(E) # from definition of conditional probability
- -P(E, C) = P(E|C) * P(C) # from definition of conditional probability
- -P(C, E) = P(E, C) # since order is not important

So...

P(C|E) = P(E|C) * P(C) / P(E)

Bayes' rule

- Derived from the product rule:
 -P(C|E) = P(E|C) * P(C) / P(E)
- Useful for diagnosis:
- If E are (observed) effects and C are (hidden) causes,
- Often have model for how causes lead to effects P(E|C)
- May also have prior beliefs (based on experience) about frequency of causes (P(C))
- Which allows us to reason abductively from effects to causes (P(C|E))

Ex: meningitis and stiff neck

- Meningitis (M) can cause stiff neck (S), though there are other causes too
- Use S as a diagnostic symptom and estimate
 p(M|S)
- Studies can estimate p(M), p(S) & p(S|M), e.g. p(M)=0.7, p(S)=0.01, p(M)=0.00002
- Harder to directly gather data on p(M|S)
- Applying Bayes' Rule:
 p(M|S) = p(S|M) * p(M) / p(S) = 0.0014

Bayesian inference

• In the setting of diagnostic/evidential reasoning

hypotheses

evidence/manifestations

 Know prior probability of hypothesis conditional probability $P(H_i)$ $P(E_j | H_i)$ $P(H_i | E_j)$

- Want to compute the *posterior probability*
- Bayes' s theorem:

$$P(H_i | E_j) = P(H_i) * P(E_j | H_i) / P(E_j)$$

Simple Bayesian diagnostic reasoning

- AKA Naive Bayes classifier
- Knowledge base:
 - Evidence / manifestations: E₁, ... E_m
 - Hypotheses / disorders: H₁, ... H_n

Note: E_j and H_i are **binary**; hypotheses are **mutually exclusive** (non-overlapping) and **exhaustive** (cover all possible cases)

- Conditional probabilities: $P(E_i | H_i)$, i = 1, ..., n; j = 1, ..., m
- Cases (evidence for a particular instance): E₁, ..., E₁
- Goal: Find the hypothesis H_i with highest posterior - $Max_i P(H_i | E_1, ..., E_l)$

Simple Bayesian diagnostic reasoning

• Bayes' rule says that

 $P(H_i | E_1...E_m) = P(E_1...E_m | H_i) P(H_i) / P(E_1...E_m)$

- Assume each evidence E_i is conditionally independent of the others, given a hypothesis H_i , then: $P(E_1...E_m | H_i) = \prod_{j=1}^m P(E_j | H_j)$
- If we only care about relative probabilities for the H_i, then we have:

$$\mathsf{P}(\mathsf{H}_{i} | \mathsf{E}_{1}...\mathsf{E}_{m}) = \alpha \mathsf{P}(\mathsf{H}_{i}) \prod_{j=1}^{m} \mathsf{P}(\mathsf{E}_{j} | \mathsf{H}_{i})$$

Limitations

- Can't easily handle multi-fault situations or cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations M₁ and M₂
- Consider composite hypothesis $H_1 \wedge H_2$, where $H_1 \& H_2$ independent. What's relative posterior?
 - $$\begin{split} \mathsf{P}(\mathsf{H}_1 \land \mathsf{H}_2 \mid \mathsf{E}_1, \, ..., \, \mathsf{E}_l) &= \alpha \; \mathsf{P}(\mathsf{E}_1, \, ..., \, \mathsf{E}_l \mid \mathsf{H}_1 \land \mathsf{H}_2) \; \mathsf{P}(\mathsf{H}_1 \land \mathsf{H}_2) \\ &= \alpha \; \mathsf{P}(\mathsf{E}_1, \, ..., \, \mathsf{E}_l \mid \mathsf{H}_1 \land \mathsf{H}_2) \; \mathsf{P}(\mathsf{H}_1) \; \mathsf{P}(\mathsf{H}_2) \\ &= \alpha \; \prod_{j=1}^l \; \mathsf{P}(\mathsf{E}_j \mid \mathsf{H}_1 \land \mathsf{H}_2) \; \mathsf{P}(\mathsf{H}_1) \; \mathsf{P}(\mathsf{H}_2) \end{split}$$
- How do we compute $P(E_j | H_1 \land H_2)$?

Limitations

- Assume H1 and H2 are independent, given E1, ..., El? $- P(H_1 \land H_2 | E_1, ..., E_l) = P(H_1 | E_1, ..., E_l) P(H_2 | E_1, ..., E_l)$
- Unreasonable assumption
 - Earthquake & Burglar independent, but not given Alarm:
 P(burglar | alarm, earthquake) << P(burglar | alarm)
- Doesn't allow causal chaining:
 - A: 2017 weather; B: 2017 corn production; C: 2018 corn price
 - A influences C indirectly: $A \rightarrow B \rightarrow C$
 - -P(C | B, A) = P(C | B)
- Need richer representation for interacting hypotheses, conditional independence & causal chaining
- Next: Bayesian Belief networks!

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Can answer queries by summing over atomic events
- But we must find a way to reduce joint size for nontrivial domains
- Bayes rule lets us compute from known conditional probabilities, usually in causal direction
- Independence & conditional independence provide tools
- Next: Bayesian belief networks

Frequentists vs. Bayesians

http://xkcd.com/1132/

Postscript: Frequentists vs. Bayesians

- Frequentist inference draws conclusions from sample data based on frequency or proportion of data
- <u>Bayesian inference</u> uses Bayes' rule to update probability estimates for hypothesis as additional evidence is learned
- Differences are often subtle, but can be consequential