
Unsupervised	
Learning:	
Clustering	

Some material adapted from slides by Andrew Moore, CMU.  See 
http://www.autonlab.org/tutorials/ for a repository of  Data Mining 
tutorials 



Unsupervised	Learning	
• Supervised	learning	used	labeled	data	pairs	(x,	y)	
to	learn	a	func:on	f	:	X→Y.	

• But,	what	if	we	don’t	have	labels?	
• No	labels	=	unsupervised	learning	
• Only	some	points	are	labeled	=	semi-supervised	
learning	
– GeJng	labels	may	be	expensive,	so	we	only	get	
a	few	

• Clustering	is	the	unsupervised	grouping	of	data	
points.		It	can	be	used	for	knowledge	discovery	



Clustering	algorithms	
• Many	clustering	algorithms	
• Clustering	typically	done	using	a	distance	measure	
defined	between	instances	

• Distance	defined	in	the	instance	feature	space	
• Agglomera:ve	approach	works	boRom	up:	

– Treat	each	instance	as	a	cluster	
– Merge	two	closest	clusters	
– Repeat	un:l	stop	condi:on	is	met	

• Top-down	approach	starts	cluster	with	all	instances	
– Find	a	cluster	to	split	into	two	or	more	smaller	clusters	
– Repeat	un:l	stop	condi:on	met	



Clustering	Data	



K-Means	Clustering	

K-Means ( k , data ) 
•  Randomly choose k 

cluster center locations 
(centroids) 

•  Loop until convergence 
•  Assign each point to the 

cluster of  the closest 
centroid 

•  Re-estimate the cluster 
centroids based on the 
data assigned to each 

•  Convergence: no point is 
assigned to a different cluster 



K-Means	Clustering	

K-Means ( k , data ) 
•  Randomly choose k 

cluster center locations 
(centroids) 

•  Loop until convergence 
•  Assign each point to the 

cluster of  the closest 
centroid. 

•  Re-estimate the cluster 
centroids based on the 
data assigned to each 

•  Convergence: no point is 
assigned to a different cluster 



K-Means	Clustering	

K-Means ( k , data ) 
•  Randomly choose k 

cluster center locations 
(centroids) 

•  Loop until convergence 
•  Assign each point to the 

cluster of  the closest 
centroid 

•  Re-estimate the cluster 
centroids based on the 
data assigned to each 

•  Convergence: no point is 
assigned to a different cluster 

 



K-Means	Clustering	

K-Means ( k , data ) 
•  Randomly choose k 

cluster center locations 
(centroids) 

•  Loop until convergence 
•  Assign each point to the 

cluster of  the closest 
centroid 

•  Re-estimate the cluster 
centroids based on the 
data assigned to each 

•  Convergence: no point is 
assigned to a different cluster 

 







11	



Problems	with	K-Means	

• Only	works	for	numeric	data	(typically	reals)	
• Very	sensi:ve	to	the	ini:al	points	
– Do	many	runs	of	k-Means,	each	with	different	
ini:al	centroids	

– Seed	the	centroids	using	a	beRer	method	than	
random.		(e.g.,	Farthest-first	sampling)	

• Must	manually	choose	k	
– Learn	the	op:mal	k	for	the	clustering.		(Note	that	
this	requires	a	performance	measure)	



Problems	with	K-Means	
• How	do	you	tell	it	which	clustering	you	want?	

– Constrained	clustering	techniques	

Same-cluster constraint 
(must-link) 

Different-cluster constraint 
(cannot-link) 



Hierarchical	Clustering	

Recursive	par::oning/merging	of	a	data	set	
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• Represents all 
partitionings of data 

• Can get a K clustering by 
looking at connected 
components at any given 
level 

• Frequently binary 
dendograms, but n-ary 
dendograms easy to 
obtain with minor changes 
to algorithms 

Dendogram	



Advantages	of	hierarchical	clustering	

• Don’t	need	to	specify	the	number	of	clusters	
• Good	for	data	visualiza:on	
– See	how	the	data	points	interact	at	many	
levels	

– Can	view	the	data	at	mul:ple	levels	of	
granularity	

– Understand	how	all	points	interact	
• Specifies	all	of	the	K	clusterings/par::ons	



Hierarchical	Clustering	
• Common	in	many	domains	

–  Biologists	and	social	scien:sts	
–  Gene	expression	data	
–  Document/web	page	organiza:on	

•  DMOZ	
•  Yahoo	directories	
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fish	rep:le	amphib.	mammal						worm	insect	crustacean	

invertebrate	

Two	main	approaches…	



Divisive	hierarchical	clustering	
• Top-down	
• Finding	the	best	par::oning	of	the	data	is	
generally	exponen:al	in	:me	

• Common	approach:	
– Let	C	be	a	set	of	clusters	
–  Ini:alize	C	to	be	the	one-clustering	of	the	data	
– While	there	exists	a	cluster	c	in	C	

•  remove	c	from	C	
•  par::on	c	into	2	clusters	using	a	flat	clustering	algorithm,	c1	and	
c2	

•  Add	to	c1	and	c2	C	

• Bisec:ng	k-means	



Divisive	clustering	



Divisive	clustering	

start	with	one	cluster	



Divisive	clustering	
split	using	flat	clustering,	e.g.	
Kmeans	



Divisive	clustering	
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Divisive	clustering	
split	using	flat	clustering	



Divisive	clustering	



Hierarchical	AgglomeraCve	Clustering	

• Let	C	be	a	set	of	clusters	
• Ini:alize	C	to	all	points/docs	as	separate	clusters	
• While	C	contains	more	than	one	cluster	
– find	c1	and	c2	in	C	that	are	closest	together	
– remove	c1	and	c2	from	C	
– merge	c1	and	c2	and	add	resul:ng	cluster	to	C	

• History	of	merging	forms	a	binary	tree	or	
hierarchy	

• Q:	How	to	measure	distance	between	clusters?	



Distance	between	clusters	
Single-link	

–  Similarity	of	the	most	similar	(single-link)	

€ 

max
l∈L,r∈R

sim(l,r)



Distance	between	clusters	
Complete-link	

–  Similarity	of	the	“furthest”	points,	the	least	similar	

Why	are	these	“local”	methods	used?	 efficiency	
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Distance	between	clusters	
• Centroid	

–  Clusters	whose	centroids	(centers	of	gravity)	are	the	most	similar	
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Distance	between	clusters	
• Average-link	

–  Average	similarity	between	all	pairs	of	elements	
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