Machine Learning:

Decision Trees
Chapter 18.1-18.3

Some material adopted from notes by Chuck Dyer

Decision Trees (DTs)

e A supervised learning method used for
classification and regression

e Given a set of training tuples, learn model to
predict one value from the others

—Learned value typically a class (e.g. goodRisk)

e Resulting model is simple to understand,
interpret, visualize and apply

Learning a Concept

The red groups are negative examples, blue positive

o7
et

bttt

Attributes
* Size: large, small
———————__ e+ Color: red, green,
blue
* Shape: square, circle

Training data
__ Size | Color | Shape | class

Large Green Square Negative
Large Green Circle Negative
Small Green Square Positive
Small Green Circle positive
Large Red Square Positive
Large Red Circle Positive
Small Red Square Positive
Small Red Circle Positive
Large Blue Square Negative
Small Blue Square Positive
Large Blue Circle Positive

Small Blue Circle Positive

tition

blue pos

induced par

ision tree-

A dec
The red groups are nega

tive

4

tive examples

Color

blue

green red

round

Shape

square

1ze

S

small

ig

b
/

Negative things are

big, green shapes and

big, blue squares

Learning decision trees

e Goal: Build a decision tree to classify examples as
positive or negative instances of a concept using
supervised learning from a training set

e A decision tree is a tree where

— each non-leaf node has an
attribute (feature)

—each leaf node has a classification
(+ or -)

—each arc has a possible value of
its attribute

e Generalization: allow for >2 classes
—e.g., for stocks, classify into {sell, hold, buy}

Expressiveness of Decision Trees

e Can express any function of the input attributes, e.g.
for Boolean functions, truth table row - path to leaf:

A B AxorB -
F F F
F
F
F

e There’s a consistent decision tree for any training set
with one path to leaf for each example (assuming

deterministic), but it probably won't generalize to
new examples

e We prefer more compact decision trees

Inductive learning arid bias

(a) (b) (c) (d)
e Suppose that we want to learn a function f(x) =y and we’re
given sample (x,y) pairs, as in figure (a)
e There are several hypotheses we could make about this
function, e.g.: (b), (c) and (d)
e A preference for one over the others reveals the bias of

our learning technique, e.g.:

— prefer piece-wise functions
— prefer a smooth function
— prefer a simple function and treat outliers as noise

Preference bias: Occam’s Razor
e William of Ockham (1285-1347)

— “non sunt multiplicanda entia praeter necessitatem -
— entities are not to be multiplied beyond necessity

e Simplest consistent explanation is the best

e Smaller decision trees correctly classifying
training examples preferred over larger ones

e Finding the smallest decision tree is NP-hard,
so we use algorithms that find reasonably
small ones

Hypothesis spaces

e How many distinct decision trees with n Boolean attributes?
— = number of Boolean functions
— = number of distinct truth tables with 2" rows = 22"
— e.g., with 6 Boolean attributes, 18,446,744,073,709,551,616 trees
e How many conjunctive hypotheses (e.g., Hungry A =Rain)?
— Each attribute can be in (positive), in (negative), or out
=>3" distinct conjunctive hypotheses
— e.g., with 6 Boolean attributes, 729 trees

e A more expressive hypothesis space
— increases chance that target function can be expressed

— increases number of hypotheses consistent with training set
=> may get worse predictions in practice

R&N’s restaurant domain

e Develop decision tree for decision patron makes
when deciding whether or not to wait for a table

e Two classes: wait, leave

e Ten attributes: Alternative available? Bar in
restaurant? Is it Friday? Are we hungry? How full
is the restaurant? How expensive? Is it raining? Do
we have reservation? What type of restaurant is
it? Estimated waiting time?

e Training set of 12 examples
e~ 7000 possible cases

Attribute-based representations

Example Attributes Target

Alt| Bar | Fri| Hun| Pat | Price | Rain | Res| Type | Est | Wait
X T| F | F | T |Some| $%$ F T |French| 0-10 T
X5 T | F F T | Full $ F F | Thai |30-60 F
X3 F | T F F |Some| $ F F | Burger| 0-10 T
X4 T| F | T T | Full $ F F [Thai [10-30| T
X; T| F | T F Full | $9% F T |French| >60 F
Xg F| T | F | T |Some| $¢ | T | T (ltalian[0-10 | T
X7 F| T | F F | None| $ T F | Burger| 0-10 F
Xg F F F T |[Some| $9% T T | Thai | 0-10 T
X, F| T | T F | Full $ T F | Burger| >60 F
X0 T| T | T T | Full | $%% F T | Italian | 10-30 F
X1 F | F F F | None| §$ F F | Thai | 0-10 F
X0 T| T | T T | Full $ F F [Burger[30-60|| T

eExamples described by attribute values (Boolean, discrete, continuous),

e.g., situations where | will/won't wait for a table
eClassification of examples is positive (T) or negative (F)

eServes as a training set

Patrons?

A decision tree

None me~_ Full from introspection

WaitEstimate?

>60 30 10-3 "~ 0-10

Alternate?

Ws

Hungry?

Reservation? Fri'Sat?

No Yes No Yes
Bar?

Yes

No

No Yes

Alternate?
Yes

Raining?

Issues

Questions

o |t’s like 20 questions

e \We can generate many decision trees
depending on what attributes we ask about
and in what order

e How do we decide?

e \What makes one decision tree better than
another: number of nodes? number of
leaves? maximum depth?

ID3 / C4.5 / J48 Algorithm

e Greedy algorithm for decision tree construction
developed by Ross Quinlan circa 1987

e Top-down construction of tree by recursively
selecting best attribute to use at current node

—Once attribute selected for current node, generate
child nodes, one for each possible value of attribute

—Partition examples using values of attribute, & assign
these subsets of examples to appropriate child node

—Repeat for each child node until all examples
associated with node are all positive or negative

Choosing the best attribute

e Key problem: choose attribute to split a given
set of examples

e Possibilities for choosing attribute:
—Random: Select one at random
—Least-Values: one with smallest # of possible values
—Most-Values: one with largest # of possible values

—Max-Gain: one with largest expected information
gain —i.e., results in smallest expected size of
subtrees rooted at its children

eThe ID3 algorithm uses the max-gain method
of selecting the best attribute

Restaurant example

Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: ???

French Y N
@ [talian Y N
e
O
©
>
2 Thai | N Y NY
>
|—
Burger N Y N Y
Empty Some Full

Patrons variable

: : O stay
Choosing an attribute @eave

ldea: good attribute splits examples into
subsets that are (ideally) all positive or all
negative

000000 000000
000000 000000
Patrons? Type?
None Some Full
000 00
o0 0000

Which is better: Patrons? or Type?

Splitting
examples
by testing
attributes

(a)

+: X1.X3X4 X6 X8X12

- X2 X5X7.X9.X10.x11

Patrons?

Mo n%l\ Full

+:
— X7 Xl

+: X1 X3 X6 X8

+: X4 X12
- X2 X7 X9.X10

(b)

+: X1.X3 X4 X6 X8 X112

- X2X3 X7 X9X10.X11

Type?

French Italian \T\Burger

+x.'

+: X6
- X0

+: X4 X8

+: X3.X12

- X2 X1 - X7.X9

{c)

+: X1 X3 XL X6 X8.X12
— X2 X5 X7 X0X10X11

Patrons?

NonoA|\ Full

+:
- X7Xx11

Yes

+: X1.X3.X6.X8

No

+: X4.X12
—: X2 X3.X9X10

Hungry?

+: X4 X112 +:
- X2 X140 - X5.X90

ID3-induced

Patrons? decision tree
None som Full

French Burger

Compare the two Decision Trees

Information theory 101

e Sprang fully formed from Claude Shannon’s
seminal work: Mathematical Theory of
Communication in 1948

¢ |ntuitions

—Common words (a, the, dog) shorter than less
common ones (parlimentarian, foreshadowing)

—morse code: common letters have shorter encodings

e Information inherent in data/message (inform-
ation entropy) measured in minimum number of
bits needed to store/send using a good encoding

Information theory 101

e |nformation entropy ... tells how much
information there is in an event. The more
uncertain or random the event is, the more
information it contains.

e Receiving a message is an event

e How much information is in these messages
_ |
Tt1e sun rose tod.ay. A None
—It’s sunny today in Honolulu!
—The coin toss is heads!

—|t’s sunny today in Seattle!
— Life discovered on Mars! v Alot

Information theory 101

e For n equally probable possible messages or
data values, each has probability 1/n
e Information of a message is -log(p) = log(n)

e.g., with 16 messages, then log(16) = 4 and we need 4
bits to identify/send each message

e [f probability distribution P (p,,p, ... p,) for n
messages, its information (aka H or entropy) is:

I(P) = -(p,*log(p,) + p,*log(p,) + .. + p,*log(p,))

Entropy of a distribution
I(P) = -(p,*log(p,) + p,*log(p,) + .. + p,*log(p,))

e Examples:
—If Pis (0.5, 0.5) then I(P) =0.5*1 +0.5*1 =1
—If P is (0.67, 0.33) then I(P) =-(2/3*log(2/3) +
1/3*log(1/3)) = 0.92
—If Pis (1, 0) then I(P) =1*1 + 0*log(0) =0
e More uniform probability distribution, greater its

information: more information is conveyed by a
message telling you which event actually occurred

e Entropy is the average number of bits/message
needed to represent a stream of messages

Example: Huffman code

¢ |n 1952 MIT student David Huffman devised (for a
homework assignment!) a coding scheme that’s
optimal when all data probabilities are powers of 1/2

e A Huffman code can be built in the following manner:

—Rank symbols in order of probability of occurrence

—Successively combine two symbols of lowest
probability to form a new composite symbol;
eventually we will build a binary tree where each
node is probability of all nodes beneath it

—Trace path to each leaf, noticing direction at each
hode

Huffman code example

M codelength prob
M P A 000 3 0.125 0.375

B 001 3 0.125 0.375

A .125

B .125 C 0l 2 0.250 0.500

C .25 D 1 1 0.500 0.500
mvravnca mananma lanath 1 750

D .5

If we use this code to many
messages (A,B,C or D) with this
probability distribution, then, over
time, the average bits/message
should approach 1.75

Information for classification

If set T of records is divided into disjoint exhaustive classes
(C,,C,,..,C,) by value of class attribute, then information
needed to identify class of an element of T is:

Info(T) = I(P)
where P is the probability distribution of partition (C,,C,,..,C,):
P=(CIA/TLNGIITL oo 1C /1T

High information Lower information

Information for classification |l

If we further divide T wrt attribute X into sets
{T,T,,.,T,} theinformation needed to identify class
of an element of T becomes the weighted average of
the information needed to identify the class of an
element of T, i.e. the weighted average of Info(T)):

Info(X,T) = 24| T.|/|T| * Info(T))

High information Low information

Information gain

e Gain(X,T) = Info(T) - Info(X,T) is difference of
— info needed to identify element of T and

— info needed to identify element of T after value of
attribute X known

eThis is gain in information due to attribute X

e Used to rank attributes and build DT where
each node uses attribute with greatest gain of
those not yet considered in path from root

e Intent: create small DTs to minimize questions

Computing Information Gain

Should we ask
about restaurant
type or how many
patrons there are?

o|(T) ="
o] (Pat, T)= 7
o| (Type, T) =7

French

Italian

Thai

Burger

N

Y

NY

N Y

Empty

Some

Gain (Patrons, T) = ?
Gain (Type, T)

=?

I(P) = -(p,*log(p,) + p,*log(p,) + .. + p,*log(p,))

Full

Computing information gain

I(T) =

-(.5log .5 +.5 log .5) French Y N
=5+5=1
| (Pat, T) = Italian Y N
2/12 (0) + 4/12 (0) +
6/12 (- (4/6 log 4/6 +
2/6 log 2/6)) Thai | N Y NY
=1/2(2/3*.6 +
1/3*1.6)
=.47 Burger | N Y N Y
| (Type, T) — Empty Some Full

2/12 (1) +2/12 (1) +

4/12 (1) +4/12 (1) =1
Gain (Patrons, T) =1-.47 =.53
Gain (Type, T)=1-1=0

I(P) = -(p,*log(p,) + p,*log(p,) + .. + p,*log(p,))

The ID3 algorithm builds a decision tree, given a set of non-categorical attributes C1, C2, ..,
Cn, the class attribute C, and a training set T of records

function ID3 (R:input attributes, C:class attribute,
S:training set) returns decision tree;

If S is empty, return single node with value Failure;

If every example 1n S has same value for C, return
single node with that wvalue;
If R is empty, then return a single node with most

frequent of the values of C found in examples S;
causes errors —-- improperly classified record

Let D be attribute with largest Gain (D,S) among R;
Let {dj| 3=1,2, .., m} be values of attribute Dj;

Let {S3| 3=1,2, .., m} be subsets of S consisting of
records with value dj for attribute D;
Return tree with root labeled D and arcs labeled

dl..dm going to the trees ID3(R-{D},C,S1).
ID3(R-{D},C,Sm);

How well does it work?

Case studies show that decision trees often at
least as accurate as human experts

—Study for diagnhosing breast cancer had humans

correctly classifying the examples 65% of the
time; DT classified 72% correct

—British Petroleum designed DT for gas-oil
separation for offshore oil platforms that
replaced an earlier rule-based expert system

—Cessna designed an airplane flight controller using
90,000 examples and 20 attributes per example

Extensions of ID3

e Using gain ratios

e Real-valued data

e Noisy data and overfitting
e Generation of rules

e Setting parameters

e Cross-validation for experimental validation of
performance

e C4.5 is an extension of ID3 that accounts for
unavailable values, continuous attribute value
ranges, pruning of decision trees, rule derivation,
and so on

Using gain ratios
e Information gain criterion favors attributes that have a
large number of values

— An attribute D with a distinct value for each record
has Info(D,T) O, thus Gain(D,T) is maximal

e To compensate, use GainRatio instead of Gain:
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)

e Splitinfo(D,T) is information due to split of T on basis
of value of categorical attribute D

Splitinfo(D,T) = I([TL|/IT[, |T2]/|T], .., [Tm|/]T])
where {T1, ... Tm}is partition of T induced by value of D

Computing gain ratio

French Y N
o|(T) =1
ol (Pat, T) = .47 talian Y N
e| (Type, T) =1 . y N Y
Gain (Pat, T) =.53 N . Ny
Gain (Type, T) =0 burger
Empty Some Full

SplitInfo (Pat, T)=-(1/6log1/6 + 1/3log 1/3+1/2log 1/2)=1/6*2.6 + 1/3*1.6 + 1/2*1
=1.47

Splitinfo (Type, T)=1/61log1/6 +1/6log1/6 + 1/3log 1/3+1/3 log 1/3
=1/6*2.6+1/6*2.6+1/3*1.6+1/3*1.6=1.93

GainRatio (Pat, T) = Gain (Pat, T) / Splitinfo(Pat, T) = .53 / 1.47 = .36
GainRatio (Type, T) = Gain (Type, T) / Splitinfo (Type, T)=0/1.93=0

Real-valued data

eSelect thresholds defining intervals so each
becomes a discrete value of attribute

e Use heuristics, e.g. always divide into quartiles

e Use domain knowledge, e.g. divide age into
infant (0-2), toddler (3-5), school-aged (5-8)
e Or treat this as another learning problem

—Try different ways to discretize continuous variable;
see which yield better results w.r.t. some metric

—E.g., try midpoint between every pair of values

Noisy data

Many kinds of noise can occur in training data

eTwo examples have same attribute/value pairs,
but different classifications

e Some attribute values wrong due to errors in
the data acquisition or preprocessing phase

e The classification is wrong (e.g., + instead of -)
because of some error

e Some attributes irrelevant to decision-making,
e.g., color of a die is irrelevant to its outcome

Overfitting

e Overfitting occurs when a statistical model
describes random error or noise instead of

underlying relationship

e |f hypothesis space has many dimensions (large
number of attributes) we may find meaningless
regularity in the data that is irrelevant to the

true, important, distinguishing features

e |f we have too little training data, even a
reasonable hypothesis space can overfit

Overfitting

*Fix by by removing irrelevant features

— E.g., remove ‘year observed’, ‘month
observed’, ‘day observed’, ‘observer
name’ from feature vector

e Fix by getting more training data
e Fix by pruning lower nodes in the decision tree
— E.g., if gain of best attribute at a node is

below a threshold, stop and make this node
a leaf rather than generating children nodes

Pruning decision trees

e Pruning a decision tree is done by replacing a whole
subtree by a leaf node

e Replacement takes place if the expected error rate
in the subtree is greater than in the single leaf, e.g.,

— Training: 1 training red success and 2 training blue failures
— Test: 3 red failures and one blue success
— Consider replacing this subtree by a single Failure node.

e After replacement, only 2 errors instead of 5

. Test Pruned
Training FAILURE
red blue rec blue 2 success

1 success O success 1 success 1 success 4 failure
O failure 2 failures 3 failure 1 failure

Converting decision trees to rules

e |t's easy to derive rules from a decision tree: write a
rule for each path from the root to a leaf

¢ |In that rule the left-hand side is built from the label
of the nodes and the labels of the arcs

e The resulting rules set can be simplified:

— Let LHS be the left hand side of a rule
— LHS’ obtained from LHS by eliminating some conditions

— Replace LHS by LHS' in this rule if the subsets of the
training set satisfying LHS and LHS' are equal

— A rule may be eliminated by using meta-conditions such
as “if no other rule applies”

Summary: decision tree learning

e Widely used learning methods in practice for
problems with relatively few features

e Strengths
— Fast and simple to implement
— Can convert result to a set of easily interpretable rules
— Empirically valid in many commercial products
— Handles noisy data
— Easy for people to understand

e \Weaknesses

— Univariate splits/partitioning using only one attribute at a
time so limits types of possible trees

— Large decision trees may be hard to understand
— Requires fixed-length feature vectors
— Non-incremental (i.e., batch method)

