Machine Learning overview Chapter 18, 21

What is learning?

- "Learning denotes changes in a system that ... enable a system to do the same task more efficiently the next time" – <u>Herbert Simon</u>
- "Learning is constructing or modifying representations of what is being experienced"
 <u>Ryszard Michalski</u>
- "Learning is making useful changes in our minds" – <u>Marvin Minsky</u>

Why study learning?

- Understand and improve efficiency of human learning
 - Use to improve methods for teaching and tutoring people (e.g., better computer-aided instruction)
- **Discover** new things or structure previously unknown
 - Examples: data mining, scientific discovery
- Fill in skeletal or incomplete specifications in a domain
 - Large, complex systems can't be completely built by hand & require dynamic updating to incorporate new information
 - Learning new characteristics expands the domain or expertise and lessens the "brittleness" of the system
- Build agents that can adapt to users, other agents, and their environment

Al & Learning Today

- Neural network learning was popular in the 60s
- In the 70s and 80s it was replaced with a paradigm based on manually encoding and using knowledge
- In the 90s, more data and the Web drove interest in new statistical machine learning (ML) techniques and new data mining applications
- Today, ML techniques and big data are behind almost all successful intelligent systems

Machine Leaning Successes

- Sentiment analysis
- Spam detection
- Machine translation
- Spoken language understanding
- Named entity detection
- Self driving cars
- Motion recognition (Microsoft X-Box)
- Identifying paces in digital images
- Recommender systems (Netflix, Amazon)
- Credit card fraud detection

A general model of learning agents

Performance standard

Major paradigms of machine learning

- **Rote learning**: 1-1 mapping from inputs to stored representation, learning by memorization, association-based storage & retrieval
- Induction: Use specific examples to reach general conclusions
- **Clustering**: Unsupervised discovery of natural groups in data
- Analogy: Find correspondence between different representations
- **Discovery**: Unsupervised, specific goal not given
- Genetic algorithms: Evolutionary search techniques, based on an analogy to survival of the fittest
- **Reinforcement** Feedback (positive or negative reward) given at the end of a sequence of steps

What we will and won't cover

- We'll look at a few popular machine learning problems and algorithms
 - -Take CMSC 478/678 Machine Leaning for more
 - -Use online resources & experiment on your own
- We'll focus on when/how to use techniques and only touch on how/why they work
- We'll cover basic methodology and evaluation
- We'll use <u>Weka</u> platform for examples & demos — Great for exploration and learning

Types of learning problems

- Supervised: learn from training examples
 - Regression
 - Classification: Decision Trees, SVM
- Unsupervised: learn w/o training examples
 - Clustering
 - Dimensionality reduction
- Lots more we won't cover
 - Hidden Marrkov models
 - Learning to rank
 - Semi-supervised learning
 - Reinforcement learning
 - Active learning

Machine Learning Problems

Supervised learning

- Given training examples of inputs & corresponding outputs, produce "correct" outputs for new inputs
- Two main scenarios:
 - Classification: outputs typically labels (goodRisk, badRisk); learn a decision boundary that separates classes
 - Regression: aka "curve fitting" or "function approximation." Learn a continuous input-output mapping from (possibly noisy) examples

Unsupervised Learning

Given only *unlabeled* data as input, learn some sort of structure, e.g.:

- Cluster your Facebook friends based on similarity of posts and friends
- Find sets of words whose meanings are related (e.g., doctor, hospital)
- Induce N topics and the words that are common in documents that are about that dopic

Weka: Waikato Environment for Knowledge Analysis

Open source Java software for ML and datamining http://cs.waikato.ac.nz/ml/weka/

	Preproce	Weka Explorer Preprocess Classify Cluster Associate Select attributes Visualize			
	Open	Open file Open URL Open DB Generate Undo Edit Save			
		Discretize -B 3 -M -1.0 -	r		Apply
• • • Weka GUI Chooser	Current re	auto-mpg 240	Attributes: 8 Sum of weights: 240	Name: mpg Missing: 0 (0%)	or this object, right-click/Alt+Shift+left-click for men Type: Numeric Distinct: 92 Unique: 55 (23%)
Program Visualization Tools Help Visualization Tools Help Vector Vector The University of Waikato Weka, a native bird of New Zealand Waikato Environment for Knowledge Analysis Version 3.8.0 (c) 1999 - 2016 The University of Waikato Hamilton, New Zealand	Applications Explorer Experimenter KnowledgeFlow Workbench Simple CLI	None Name mpg cylinders displacement horsepower weight acceleration year origin	Invert Pattern	Statistic Minimum Maximum Mean StdDev Class: origin (Nom)	Value 9 44.6 23.006 7.777 Visualize All
	Status OK	Remo	ve	9	26.8 44.6 Log x 0