
Planning
Chapter 11.1-11.3

Some material adopted from notes
by Andreas Geyer-Schulz

and Chuck Dyer

Overview
• What is planning?
• Approaches to planning

– GPS / STRIPS
– Situation calculus formalism [revisited]
– Partial-order planning

Blocks World Planning

A B C

A
B
C

Blocks world
The blocks world is a micro-world consisting of
a table, a set of blocks and a robot hand
Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on the table
– The hand can only hold one block

Typical representation uses a logic notation:
ontable(b) ontable(d)
on(c,d) holding(a)
clear(b) clear(c)

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A B C

A
B
C

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal state:
on(b,c)
on(a,b)
ontable(c)

A B C

A
B
C

Plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

assertions
describing
a state

atomic
robot
actions

Planning problem
• Find a sequence of actions that achieves a given

goal state when executed from a given initial state
• Given

– a set of operator descriptions defining possible primitive
actions by the agent,

– an initial state description, and
– a goal state description or predicate,

 compute plan as sequence of operator instances that
when executed in initial state changes it to goal state

• States usually specified as conjunction of
conditions, e.g. ontable(a) ∧ on(b, a)

Planning vs. problem solving
• Planning and problem solving methods can often

solve similar problems
• Planning is more powerful and efficient because of

the representations and methods used
• States, goals, and actions are decomposed into sets

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather

than state space (though there are also state-space
planners)

• Sub-goals can be planned independently, reducing
the complexity of the planning problem

Typical assumptions
• Atomic time: Each action is indivisible
• No concurrent actions allowed, but actions need

not be ordered w.r.t each other in the plan
• Deterministic actions: action results completely

determined — no uncertainty in their effects
• Agent is the sole cause of change in the world
• Agent is omniscient with complete knowledge of

the state of the world
• Closed world assumption where everything known

to be true in the world is included in the state
description and anything not listed is false

Blocks world
The blocks world is a micro-world consisting of a table,
a set of blocks and a robot hand.
Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on

the table
– The hand can only hold one block

Typical representation:
ontable(b) ontable(d)
on(c,d) holding(a)
clear(b) clear(c)

Meant to be a simple model!

Try demo at http://aispace.org/planning/

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A B C

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A B C

A
B
C

A plan:
 pickup(a)

 stack(a,b)
 unstack(a,b)
 putdown(a)
 pickup(b)
 stack(b,c)
 pickup(a)
 stack(a,b)

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Major approaches
• Planning as search
• GPS / STRIPS
• Situation calculus
• Partial order planning
• Hierarchical decomposition (HTN planning)
• Planning with constraints (SATplan,

Graphplan)
• Reactive planning

Planning as Search
• Can think of planning as a search problem
• Actions: generate successor states
• States: completely described & only used for

successor generation, heuristic fn. evaluation &
goal testing

• Goals: represented as a goal test and using a
heuristic function

• Plan representation: unbroken sequences of
actions forward from initial states or backward
from goal state

“Get a quart of milk, a bunch of bananas
and a variable-speed cordless drill.”

Treating planning as a search
problem isn’t very efficient

General Problem Solver
•  The General Problem Solver (GPS)

system was an early planner
(Newell, Shaw, and Simon, 1957)

• GPS generated actions that reduced the difference between
some state and a goal state

• GPS used Means-Ends Analysis
– Compare given to desired states; select best action to do next
– Table of differences identifies actions to reduce types of differences

• GPS was a state space planner: operated in domain of state
space problems specified by initial state, some goal states,
and set of operations

•  Introduced general way to use domain knowledge to select
most promising action to take next

Situation calculus planning
• Intuition: Represent the planning problem

using first-order logic
– Situation calculus lets us reason about

changes in the world
– Use theorem proving to “prove” that a

particular sequence of actions, when applied
to the initial situation leads to desired result

• This is how the “neats” approach the problem

Situation calculus
• Initial state: logical sentence about (situation) S0

At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬ Have(Bananas, S0) ∧ ¬ Have(Drill, S0)

• Goal state:
(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s)

• Operators describe how world changes as a result of actions:
∀(a,s) Have(Milk,Result(a,s)) ⇔
 ((a=Buy(Milk) ∧ At(Grocery,s)) ∨ (Have(Milk, s) ∧ a ≠ Drop(Milk)))

• Result(a,s) names situation resulting from executing action a in
situation s

• Action sequences also useful: Result'(l,s) is result of executing the
list of actions (l) starting in s:
(∀s) Result'([],s) = s
(∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s))

Situation calculus II
• A solution is a plan that when applied to the

initial state yields situation satisfying the goal:
At(Home, Result'(p,S0))
 ∧ Have(Milk, Result'(p,S0))
 ∧ Have(Bananas, Result'(p,S0))
 ∧ Have(Drill, Result'(p,S0))

• We expect a plan (i.e., variable assignment
through unification) such as:

p = [Go(Grocery), Buy(Milk), Buy(Bananas),
 Go(HardwareStore), Buy(Drill), Go(Home)]

Situation calculus: Blocks world
•  An example of a situation calculus rule for the blocks world:

Clear (X, Result(A,S)) ↔
 [Clear (X, S) ∧
 (¬(A=Stack(Y,X) ∨ A=Pickup(X))
 ∨ (A=Stack(Y,X) ∧ ¬(holding(Y,S))
 ∨ (A=Pickup(X) ∧ ¬(handempty(S) ∧ ontable(X,S) ∧ clear(X,S))))]
 ∨ [A=Stack(X,Y) ∧ holding(X,S) ∧ clear(Y,S)]
 ∨ [A=Unstack(Y,X) ∧ on(Y,X,S) ∧ clear(Y,S) ∧ handempty(S)]
 ∨ [A=Putdown(X) ∧ holding(X,S)]

•  English translation: A block is clear if (a) in the previous state it
was clear and we didn’t pick it up or stack something on it
successfully, or (b) we stacked it on something else successfully,
or (c) something was on it that we unstacked successfully, or (d)
we were holding it and we put it down.

•  Whew!!! There’s gotta be a better way!

Situation calculus planning: Analysis
• Fine in theory, but problem solving (search) is

exponential in worst case
• Resolution theorem proving only finds a proof

(plan), not necessarily a good plan
• So, restrict language and use special-purpose

algorithm (a planner) rather than general
theorem prover

• Planning is a common task for intelligent
agents, so it’s reasonable to have a special
subsystem for it

 Strips planning representation
•  Classic approach first used in the STRIPS

(Stanford Research Institute Problem Solver) planner
•  A State is a conjunction of ground literals

at(Home) ∧ ¬have(Milk) ∧ ¬have(bananas) ...
•  Goals are conjunctions of literals, but may have

variables, assumed to be existentially quantified
at(?x) ∧ have(Milk) ∧ have(bananas) ...

•  Need not fully specify state
– Non-specified conditions either don’t-care or assumed false
– Represent many cases in small storage
– May only represent changes in state rather than entire situation

•  Unlike theorem prover, not seeking whether goal is true, but is
there a sequence of actions to attain it

Shakey the robot

Shakey video circa 1969

https://youtu.be/qXdn6ynwpiI

Operator/action representation
• Operators contain three components:

– Action description
– Precondition - conjunction of positive literals
– Effect - conjunction of positive or negative literals describing

how situation changes when operator is applied
• Example:

Op[Action: Go(there),
 Precond: At(here) ∧ Path(here,there),
 Effect: At(there) ∧ ¬At(here)]

• All variables are universally quantified
• Situation variables are implicit

– preconditions must be true in the state immediately before
operator is applied; effects are true immediately after

Go(there)

At(here) ,Path(here,there)

At(there) , ¬At(here)

Blocks world operators
• Classic basic operations for the blocks world:

–  stack(X,Y): put block X on block Y
–  unstack(X,Y): remove block X from block Y
–  pickup(X): pickup block X
–  putdown(X): put block X on the table

• Each represented by
–  list of preconditions
–  list of new facts to be added (add-effects)
–  list of facts to be removed (delete-effects)
–  optionally, set of (simple) variable constraints

• For example stack(X,Y):
preconditions(stack(X,Y), [holding(X), clear(Y)])
deletes(stack(X,Y), [holding(X), clear(Y)]).
adds(stack(X,Y), [handempty, on(X,Y), clear(X)])
constraints(stack(X,Y), [X≠Y, Y≠table, X≠table])

Blocks world operators (Prolog)

operator(stack(X,Y),
 Precond [holding(X), clear(Y)],
 Add [handempty, on(X,Y), clear(X)],
 Delete [holding(X), clear(Y)],

 Constr [X≠Y, Y≠table, X≠table]).

operator(pickup(X),
 [ontable(X), clear(X), handempty],
 [holding(X)],
 [ontable(X), clear(X), handempty],
 [X≠table]).

operator(unstack(X,Y),
 [on(X,Y), clear(X), handempty],
 [holding(X), clear(Y)],
 [handempty, clear(X), on(X,Y)],
 [X≠Y, Y≠table, X≠table]).

operator(putdown(X),
 [holding(X)],
 [ontable(X), handempty, clear(X)],
 [holding(X)],
 [X≠table]).

STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with

current goal on top

•  If current goal not satisfied by present state, find
operator that adds it and push operator and its
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack
• When an operator is on top stack, record the

application of that operator on the plan sequence
and use the operator’s add and delete lists to update
the current state

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A B C

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Trace (Prolog)
strips([on(b,c),on(a,b),ontable(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]

strips([holding(b),clear(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]

strips([ontable(b),clear(b),handempty],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Applying pickup(b)
strips([holding(b),clear(c)],[clear(a),clear(c),holding(b),ontable(a),ontable(c)],[pickup(b)])

Applying stack(b,c)
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)])
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

strips([holding(a),clear(b)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)])
Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]

strips([ontable(a),clear(a),handempty],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],
[stack(b,c),pickup(b)])

Applying pickup(a)
strips([holding(a),clear(b)],[clear(b),holding(a),ontable(c),on(b,c)],[pickup(a),stack(b,c),pickup(b)])

Applying stack(a,b)
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),ontable(c),on(a,b),on(b,c)],

[stack(a,b),pickup(a),stack(b,c),pickup(b)])

Strips in Prolog
% strips(+Goals, +InitState, -Plan)
strips(Goal, InitState, Plan):-
 strips(Goal, InitState, [], _, RevPlan),
 reverse(RevPlan, Plan).

% strips(+Goals,+State,+Plan,-NewState, NewPlan)
% Finished if each goal in Goals is true
% in current State.
strips(Goals, State, Plan, State, Plan) :-
 subset(Goals,State).

strips(Goals, State, Plan, NewState, NewPlan):-
 % Goal is an unsatisfied goal.
 member(Goal, Goals),
 (\+ member(Goal, State)),
 % Op is an Operator with Goal as a result.
 operator(Op, Preconditions, Adds, Deletes,_),
 member(Goal,Adds),
 % Achieve the preconditions
 strips(Preconditions, State, Plan, TmpState1,

TmpPlan1),
 % Apply the Operator
 diff(TmpState1, Deletes, TmpState2),
 union(Adds, TmpState2, TmpState3).
 % Continue planning.
 strips(GoalList, TmpState3, [Op|TmpPlan1],

NewState, NewPlan).

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A B C

A
B
C

A plan:
 pickup(a)

 stack(a,b)
 unstack(a,b)
 putdown(a)
 pickup(b)
 stack(b,c)
 pickup(a)
 stack(a,b)

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(b)
stack(b,a)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Yet Another BW planning problem

Initial state:
ontable(a)
ontable(b)
clear(a)
clear(b)
handempty

Goal:
on(a,b)
on(b,a)

A B
Plan:

??

Goal interaction
•  Simple planning algorithms assume independent sub-goals

– Solve each separately and concatenate the solutions
•  The “Sussman Anomaly” is the classic example of the goal

interaction problem:
– Solving on(A,B) first (via unstack(C,A), stack(A,B)) is undone

when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))
– Solving on(B,C) first will be undone when solving on(A,B)

• Classic STRIPS couldn’t handle this, although minor
modifications can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state

Sussman Anomaly

A B
C Initial state

Goal state

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
||Achieve clear(a) via unstack(_1584,a) with preconds:
[on(_1584,a),clear(_1584),handempty]
||Applying unstack(c,a)
||Achieve handempty via putdown(_2691) with preconds: [holding(_2691)]
||Applying putdown(c)
|Applying pickup(a)
Applying stack(a,b)
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]
|Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]
||Achieve clear(b) via unstack(_5625,b) with preconds:
[on(_5625,b),clear(_5625),handempty]
||Applying unstack(a,b)
||Achieve handempty via putdown(_6648) with preconds: [holding(_6648)]
||Applying putdown(a)
|Applying pickup(b)
Applying stack(b,c)
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
|Applying pickup(a)
Applying stack(a,b)

From
[clear(b),clear(c),ontable(a),ontable(b),on(
c,a),handempty]
 To [on(a,b),on(b,c),ontable(c)]
 Do:
 unstack(c,a)
 putdown(c)
 pickup(a)
 stack(a,b)
 unstack(a,b)
 putdown(a)
 pickup(b)
 stack(b,c)
 pickup(a)
 stack(a,b)

A
B
C

Sussman Anomaly

• Classic Strips assumed that once a goal had
been satisfied it would stay satisfied

• Simple Prolog version selects any currently
unsatisfied goal to tackle at each iteration

• This can handle this problem, at the expense
of looping for other problems

• What’s needed? -- notion of “protecting” a
sub-goal so that it’s not undone by later step

State-space planning
• STRIPS searches thru a space of situations (where

you are, what you have, etc.)
– Plan is a solution found by “searching” through situations to

get to goal

• Progression planners search forward from initial
state to goal state
– Usually results in a high branching factor

• Regression planners search backward from goal
– OK if operators have enough information to go both ways
– Can reduce branching: you’re only considering things

relevant to goal
– Handling a conjunction of goals is difficult (e.g., STRIPS)

Plan-space planning
• An alternative is to search through the space of
plans, rather than situations

• Start from a partial plan which is expanded and
refined until a complete plan is generated

• Refinement operators add constraints to the partial
plan and modification operators for other changes

• We can still use STRIPS-style operators:
Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

could result in a partial plan of
[… RightShoe … LeftShoe …]

Partial-order planning
• Linear planners build plans as totally ordered

sequences of steps
• Non-linear planners (aka partial-order planners)

build plans as sets of steps with temporal constraints
– constraints like S1<S2 if step S1 must come before S2

• One refines a partially ordered plan (POP) by either:
– adding a new plan step, or
– adding a new constraint to the steps already in the plan

• A POP can be linearized (converted to a totally
ordered plan) by topological sorting

Some example domains

We’ll use some simple problems with a real world
flavor to illustrate planning problems and algorithms
• Putting on your socks and shoes in the morning

– Actions like put-on-left-sock, put-on-right-shoe
• Planning a shopping trip involving buying several

kinds of items
– Actions like go(X), buy(Y)

A simple graphical notation

Start Start

Initial State

Goal State

Finish Finish

LeftShoeOn RightShoeOn

(a) (b)

Partial Order Plan vs. Total Order Plan

The space of POPs is smaller than TOPs and hence involve less search

Least commitment
• Non-linear planners embody the principle of

least commitment
– only choose actions, orderings & variable bindings

absolutely necessary, postponing other decisions
– avoids early commitment to decisions that don’t

really matter
• Linear planners always choose to add a plan

step in a particular place in the sequence
• Non-linear planners choose to add a step and

possibly some temporal constraints

Non-linear plan
A non-linear plan consists of

(1) A set of steps {S1, S2, S3, S4…}
Steps have operator descriptions, preconditions & post-conditions

(2) A set of causal links { … (Si,C,Sj) …}
Purpose of step Si is to achieve precondition C of step Sj

(3) A set of ordering constraints { … Si<Sj … }
Step Si must come before step Sj

Non-linear plan
A non-linear plan consists of

(1) A set of steps {S1, S2, S3, S4…}
Steps have operator descriptions, preconditions & post-conditions

(2) A set of causal links { … (Si,C,Sj) …}
Purpose of step Si is to achieve precondition C of step Sj

(3) A set of ordering constraints { … Si<Sj … }
Step Si must come before step Sj

A non-linear plan is complete iff
– Every step mentioned in (2) and (3) is in (1)
– If Sj has prerequisite C, then there exists a causal link in (2) of the

form (Si,C,Sj) for some Si
– If (Si,C,Sj) is in (2) and step Sk is in (1), and Sk threatens (Si,C,Sj)

(i.e., makes C false), then (3) contains either Sk<Si or Sj<Sk

The initial plan

Every plan starts the same way

S1:Start

S2:Finish

Initial State

Goal State

Trivial example
Operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

S1:Start

S2:Finish

RightShoeOn ^ LeftShoeOn

Steps: {S1:[Op(Action:Start)],

 S2:[Op(Action:Finish,

 Pre: RightShoeOn^LeftShoeOn)]}

 Links: {}

Orderings: {S1<S2}

Solution

Start

Left
Sock

Right
Sock

Right
Shoe

Left
Shoe

Finish

POP constraints and search heuristics
• Only add steps that achieve a currently

unachieved precondition
• Use a least-commitment approach:

– Don’t order steps unless they need to be ordered

• Honor causal links S1 → S2 that protect
condition c:
– Never add an intervening step S3 that violates c
–  If a parallel action threatens c (i.e., has effect of negating or

clobbering c), resolve threat by adding ordering links:
•  Order S3 before S1 (demotion)
•  Order S3 after S2 (promotion)

c

Partial-order planning example

• Initially: at home; SM sells bananas, milk;
HWS sells drills

• Goal: Have milk, bananas, and a drill

Start

Finish

At(Home) Sells(SM, Banana) Sells(SM,Milk) Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Banana) At(Home)

Planning
Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(s), Sells(s,Drill) At(s), Sells(s,Milk) At(s), Sells(s,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Ordering constraints

Causal links (protected)
Have light arrows at every bold arrow.

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Have(Bananas) Have(Milk) Have(Drill)

Planning

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Go(SM) Go(HWS)

At(x) At (x)

Planning

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Go(SM) Go(HWS)

At(Home) At (Home)

Impasse à must backtrack & make another choice

How to identify a dead end?
S1

S3

S2

c
¬c

S1

S3

S2

c

¬c

S1

S3

S2

c

¬c
(a) (b)

Demotion
(c)
Promotion

Resolving a threat
The S3 action threatens
the c precondition of S2
if S3 neither precedes
nor follows S2 and S3
has an effect that
negates c.

At(SM),	Sells(SM,Milk)	At(HWS),	Sells(HWS,Drill)	 At(SM),	Sells(SM,Bananas)	

At(x)							

Buy(Milk,SM)	 Buy(Bananas,SM)	

At(l2)	

Go(l2,	SM)	

				At(l1)					

Go(l1,HWS)	

Buy(Drill,HWS)	

Have(Drill),	Have(Milk),	Have(Bananas),	At(Home)	

Consider the threats

•  To resolve the third threat, make Buy(Drill) precede
Go(SM)
–  This resolves all three threats

Resolve a threat

At(SM),	Sells(SM,Milk)	At(HWS),	Sells(HWS,Drill)	 At(SM),	Sells(SM,Bananas)	

At(x)							

Buy(Milk,SM)	 Buy(Bananas,SM)	

At(l2)	

Go(l2,	SM)	

				At(l1)					

Go(l1,HWS)	

Buy(Drill,HWS)	

Have(Drill),	Have(Milk),	Have(Bananas),	At(Home)	

To resolve the third threat, make Buy(Drill) precede Go(SM)
This resolves all three threats

Go Home

Establish At(l3) with l3=SM

Buy(Milk,SM)	 Buy(Bananas,SM)	

At(x)							At(HWS)	At(Home)	

Go(Home,HWS)	

At(SM),	Sells(SM,Milk)	At(HWS),	Sells(HWS,Drill)	 At(SM),	Sells(SM,Bananas)	

Buy(Drill,HWS)	

Have(Drill),	Have(Milk),	Have(Bananas),	At(Home)	

At(SM)	

Go(SM,Home)	

Go(HWS,SM)	

Planning

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Go(SM) Go(HWS)

At(Home) At (HWS)

Go(Home)
At(SM)

2. by promotion

1. Try to go from HWS to SM
(i.e. a different way of achieving At(x))

Final Plan

•  Establish At(l3) with l3=SM

Buy(Milk,SM)	 Buy(Bananas,SM)	

At(x)							At(HWS)	At(Home)	

Go(Home,HWS)	

At(SM),	Sells(SM,Milk)	At(HWS),	Sells(HWS,Drill)	 At(SM),	Sells(SM,Bananas)	

Buy(Drill,HWS)	

Have(Drill),	Have(Milk),	Have(Bananas),	At(Home)	

At(SM)	

Go(SM,Home)	

Go(HWS,SM)	

If 2 would try At(HWS) or
At(Home), threats could not
be resolved.

The final plan

Real-world planning domains

• Real-world domains are complex and don’t satisfy
the assumptions of STRIPS or partial-order
planning methods

• Some of the characteristics we may need to handle:
– Modeling and reasoning about resources
– Representing and reasoning about time
– Planning at different levels of abstractions
– Conditional outcomes of actions
– Uncertain outcomes of actions
– Exogenous events
–  Incremental plan development
– Dynamic real-time re-planning

} Scheduling

} HTN planning

} Planning under uncertainty

Hierarchical decomposition
• Hierarchical decomposition, or hierarchical task

network (HTN) planning, uses abstract operators
to incrementally decompose a planning problem
from a high-level goal statement to a primitive
plan network

• Primitive operators represent actions that are
executable, and can appear in the final plan

• Non-primitive operators represent goals
(equivalently, abstract actions) that require further
decomposition (or operationalization) to be
executed

• There is no “right” set of primitive actions: One
agent’s goals are another agent’s actions!

HTN planning: example

HTN operator: Example

OPERATOR decompose
PURPOSE: Construction
CONSTRAINTS:
 Length (Frame) <= Length (Foundation),
 Strength (Foundation) > Wt(Frame) + Wt(Roof)
 + Wt(Walls) + Wt(Interior) + Wt(Contents)
PLOT: Build (Foundation)
 Build (Frame)
 PARALLEL
 Build (Roof)
 Build (Walls)
 END PARALLEL
 Build (Interior)

HTN operator representation
• Russell & Norvig explicitly represent causal links;

these can also be computed dynamically by using a
model of preconditions and effects

• Dynamically computing causal links means that
actions from one operator can safely be interleaved
with other operators, and subactions can safely be
removed or replaced during plan repair

• Russell & Norvig’s representation only includes
variable bindings, but more generally we can
introduce a wide array of variable constraints

Truth criterion
• Determining if a formula is true at a particular point

in a partially ordered plan is, in general, NP-hard
•  Intuition: there are exponentially many ways to

linearize a partially ordered plan
• Worst case: if there are N actions unordered with

respect to each other, there are N! linearizations
• Ensuring soundness of truth criterion requires

checking formula under all possible linearizations
• Use heuristic methods instead to make planning

feasible
• Check later to ensure no constraints are violated

Truth criterion in HTN planners
• Heuristic: prove that there is one possible ordering

of the actions that makes the formula true – but
don’t insert ordering links to enforce that order

• Such a proof is efficient
– Suppose you have an action A1 with a precondition P
– Find an action A2 that achieves P (A2 could be initial

world state)
– Make sure there is no action necessarily between A2 and

A1 that negates P

• Applying this heuristic for all preconditions in the
plan can result in infeasible plans

Increasing expressivity
• Conditional effects

–  Instead of having different operators for different
conditions, use a single operator with conditional effects

– Move (block1, from, to) and MoveToTable (block1, from)
collapse into one Move (block1, from, to):
•  Op(ACTION: Move(block1, from, to),

PRECOND: On (block1, from) ^ Clear (block1) ^ Clear (to)
EFFECT: On (block1, to) ^ Clear (from) ^ ~On(block1,
from) ^ ~Clear(to) when to<>Table

•  There’s a problem with this operator: can you spot what it
is?

• Negated and disjunctive goals
• Universally quantified preconditions and effects

Reasoning about resources
•  Introduce numeric variables used as measures
• These variables represent resource quantities, and

change over the course of the plan
• Certain actions may produce (increase the quantity

of) resources
• Other actions may consume (decrease the quantity

of) resources
• More generally, may want different resource types

– Continuous vs. discrete
– Sharable vs. nonsharable
– Reusable vs. consumable vs. self-replenishing

Other real-world planning issues

• Conditional planning
• Partial observability
•  Information gathering actions
• Execution monitoring and replanning
• Continuous planning
• Multi-agent (cooperative or adversarial) planning

 Planning summary
•  Planning representations

–  Situation calculus
–  STRIPS representation: Preconditions and effects

•  Planning approaches
–  State-space search (STRIPS, forward chaining, ….)
–  Plan-space search (partial-order planning, HTN, …)
–  Constraint-based search (GraphPlan, SATplan, …)

•  Search strategies
–  Forward planning
–  Goal regression
–  Backward planning
–  Least-commitment
–  Nonlinear planning

