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Overview 
• What is planning? 
• Approaches to planning 

– GPS / STRIPS 
– Situation calculus formalism [revisited] 
– Partial-order planning 



Blocks World Planning 
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Blocks world 
The blocks world is a micro-world consisting of 
a table, a set of blocks and a robot hand 
Some domain constraints: 

– Only one block can be on another block 
– Any number of blocks can be on the table 
– The hand can only hold one block 

Typical representation uses a logic notation: 
ontable(b) ontable(d) 
on(c,d)      holding(a) 
clear(b)     clear(c) 



Typical BW planning problem 

Initial state: 
clear(a) 
clear(b) 
clear(c) 
ontable(a) 
ontable(b) 
ontable(c) 
handempty 

Goal: 
on(b,c) 
on(a,b) 
ontable(c) 
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Typical BW planning problem 

Initial state: 
clear(a) 
clear(b) 
clear(c) 
ontable(a) 
ontable(b) 
ontable(c) 
handempty 

Goal state: 
on(b,c) 
on(a,b) 
ontable(c) 

A B C 

A 
B 
C 

Plan: 
pickup(b) 
stack(b,c) 
pickup(a) 
stack(a,b) 

assertions 
describing 
a state 

atomic 
robot 
actions 



Planning problem 
• Find a sequence of actions that achieves a given 

goal state when executed from a given initial state 
• Given  

– a set of operator descriptions defining possible primitive 
actions by the agent, 

– an initial state description, and  
– a goal state description or predicate,  

 compute plan as sequence of operator instances that 
when executed in initial state changes it to goal state 

• States usually specified as conjunction of 
conditions, e.g. ontable(a) ∧ on(b, a) 



Planning vs. problem solving 
• Planning and problem solving methods can often 

solve similar problems 
• Planning is more powerful and efficient because of 

the representations and methods used 
• States, goals, and actions are decomposed into sets 

of sentences (usually in first-order logic) 
• Search often proceeds through plan space rather 

than state space (though there are also state-space 
planners) 

• Sub-goals can be planned independently, reducing 
the complexity of the planning problem 



Typical assumptions 
• Atomic time: Each action is indivisible  
• No concurrent actions allowed, but actions need 

not be ordered w.r.t each other in the plan 
• Deterministic actions: action results completely 

determined —  no uncertainty in their effects  
• Agent is the sole cause of change in the world  
• Agent is omniscient with complete knowledge of 

the state of the world  
• Closed world assumption where everything known 

to be true in the world is included in the state 
description and anything not listed is false 



Blocks world 
The blocks world is a micro-world consisting of a table, 
a set of blocks and a robot hand. 
Some domain constraints: 

– Only one block can be on another block 
– Any number of blocks can be on 

the table 
– The hand can only hold one block 

Typical representation: 
ontable(b) ontable(d) 
on(c,d)      holding(a) 
clear(b)     clear(c) 

Meant to be a simple model! 



Try demo at http://aispace.org/planning/ 



Typical BW planning problem 

Initial state: 
clear(a) 
clear(b) 
clear(c) 
ontable(a) 
ontable(b) 
ontable(c) 
handempty 

Goal: 
on(b,c) 
on(a,b) 
ontable(c) 

A B C 

A 
B 
C 

A plan: 
pickup(b) 
stack(b,c) 
pickup(a) 
stack(a,b) 



Another BW planning problem 

Initial state: 
clear(a) 
clear(b) 
clear(c) 
ontable(a) 
ontable(b) 
ontable(c) 
handempty 

Goal: 
on(a,b) 
on(b,c) 
ontable(c) 

A B C 

A 
B 
C 

A plan: 
 pickup(a) 

       stack(a,b) 
       unstack(a,b) 
       putdown(a) 
       pickup(b) 
       stack(b,c) 
       pickup(a) 
       stack(a,b) 
 

 



Yet Another BW planning problem 

Initial state: 
clear(c) 
ontable(a) 
on(b,a) 
on(c,b) 
handempty 

Goal: 
on(a,b) 
on(b,c) 
ontable(c) 

A 
B 
C 

A 
B 
C 

Plan: 
unstack(c,b) 
putdown(c) 
unstack(b,a) 
putdown(b) 
putdown(b) 
pickup(a) 
stack(a,b) 
unstack(a,b) 
putdown(a) 
pickup(b) 
stack(b,c) 
pickup(a) 
stack(a,b) 

 
 

 



Major approaches 
• Planning as search 
• GPS / STRIPS 
• Situation calculus 
• Partial order planning 
• Hierarchical decomposition (HTN planning) 
• Planning with constraints (SATplan, 

Graphplan) 
• Reactive planning 



Planning as Search 
• Can think of planning as a search problem 
• Actions: generate successor states 
• States: completely described & only used for 

successor generation, heuristic fn. evaluation & 
goal testing 

• Goals:  represented as a goal test and using a 
heuristic function 

• Plan representation: unbroken sequences of 
actions forward from initial states or backward 
from goal state 



“Get a quart of milk, a bunch of bananas 
and a variable-speed cordless drill.” 

Treating planning as a search 
problem isn’t very efficient 



General Problem Solver 
•  The General Problem Solver (GPS) 

system was an early  planner 
(Newell, Shaw, and Simon, 1957)  

• GPS generated actions that reduced the difference between 
some state and a goal state 

• GPS used Means-Ends Analysis 
– Compare given to desired states; select best action to do next 
– Table of differences identifies actions to reduce types of differences 

• GPS was a state space planner: operated in domain of state 
space problems specified by initial state, some goal states, 
and set of operations 

•  Introduced general way to use domain knowledge to select 
most promising action to take next 



Situation calculus planning 
• Intuition:  Represent the planning problem 

using first-order logic 
– Situation calculus lets us reason about 

changes in the world 
– Use theorem proving to “prove” that a 

particular sequence of actions, when applied 
to the initial situation leads to desired result 

• This is how the “neats” approach the problem 



Situation calculus 
• Initial state: logical sentence about (situation) S0 

At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬ Have(Bananas, S0) ∧ ¬ Have(Drill, S0) 

• Goal state:  
(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s) 

• Operators describe how world changes as a result of actions:  
∀(a,s) Have(Milk,Result(a,s)) ⇔  
  ((a=Buy(Milk) ∧ At(Grocery,s)) ∨ (Have(Milk, s) ∧ a ≠ Drop(Milk))) 

• Result(a,s) names situation resulting from executing action a in 
situation s 

• Action sequences also useful: Result'(l,s) is result of executing the 
list of actions (l) starting in s: 
(∀s) Result'([],s) = s 
(∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s)) 

 



Situation calculus II 
• A solution is a plan that when applied to the 

initial state yields situation satisfying the goal:  
At(Home, Result'(p,S0))  
    ∧ Have(Milk, Result'(p,S0)) 
    ∧ Have(Bananas, Result'(p,S0)) 
    ∧ Have(Drill, Result'(p,S0)) 

• We expect a plan (i.e., variable assignment 
through unification) such as:  

p = [Go(Grocery), Buy(Milk), Buy(Bananas), 
        Go(HardwareStore), Buy(Drill), Go(Home)] 



Situation calculus: Blocks world 
•  An example of a situation calculus rule for the blocks world: 

Clear (X, Result(A,S)) ↔  
    [Clear (X, S) ∧  
      (¬(A=Stack(Y,X) ∨ A=Pickup(X)) 
      ∨ (A=Stack(Y,X) ∧ ¬(holding(Y,S)) 
      ∨ (A=Pickup(X) ∧ ¬(handempty(S) ∧ ontable(X,S) ∧ clear(X,S))))] 
    ∨ [A=Stack(X,Y) ∧ holding(X,S) ∧ clear(Y,S)] 
    ∨ [A=Unstack(Y,X) ∧ on(Y,X,S) ∧ clear(Y,S) ∧ handempty(S)] 
    ∨ [A=Putdown(X) ∧ holding(X,S)] 

•  English translation: A block is clear if (a) in the previous state it 
was clear and we didn’t pick it up or stack something on it 
successfully, or (b) we stacked it on something else successfully, 
or (c) something was on it that we unstacked successfully, or (d) 
we were holding it and we put it down. 

•  Whew!!! There’s gotta be a better way! 



Situation calculus planning: Analysis 
• Fine in theory, but problem solving (search) is 

exponential in worst case 
• Resolution theorem proving only finds a proof 

(plan), not necessarily a good plan 
• So, restrict language and use special-purpose 

algorithm (a planner) rather than general 
theorem prover 

• Planning is a common task for intelligent 
agents, so it’s reasonable to have a special 
subsystem for it 



  Strips planning representation 
•  Classic approach first used in the STRIPS 

(Stanford Research Institute Problem Solver) planner 
•  A State is a conjunction of ground literals 

at(Home) ∧ ¬have(Milk) ∧ ¬have(bananas) ... 
•  Goals are conjunctions of literals, but may have 

variables, assumed to be existentially quantified 
at(?x) ∧ have(Milk) ∧ have(bananas) ... 

•  Need not fully specify state  
– Non-specified conditions either don’t-care or assumed false  
– Represent many cases in small storage  
– May only represent changes in state rather than entire situation   

•  Unlike theorem prover, not seeking whether goal is true, but is 
there a sequence of actions to attain it  

Shakey the robot 



Shakey video circa 1969 

https://youtu.be/qXdn6ynwpiI 



Operator/action representation 
• Operators contain three components: 

– Action description  
– Precondition - conjunction of positive literals  
– Effect - conjunction of positive or negative literals describing 

how situation changes when operator is applied  
• Example: 

Op[Action:  Go(there),  
      Precond:  At(here) ∧ Path(here,there),  
      Effect:  At(there) ∧ ¬At(here)] 

• All variables are universally quantified  
• Situation variables are implicit 

– preconditions must be true in the state immediately before 
operator is applied; effects are true immediately after 

Go(there) 

At(here) ,Path(here,there) 

At(there) , ¬At(here) 



Blocks world operators 
• Classic basic operations for the blocks world: 

–  stack(X,Y): put block X on block Y 
–  unstack(X,Y): remove block X from block Y 
–  pickup(X): pickup block X 
–  putdown(X): put block X on the table 

• Each represented by  
–  list of preconditions 
–  list of new facts to be added (add-effects) 
–  list of facts to be removed (delete-effects) 
–  optionally, set of (simple) variable constraints 

• For example stack(X,Y): 
preconditions(stack(X,Y), [holding(X), clear(Y)]) 
deletes(stack(X,Y), [holding(X), clear(Y)]). 
adds(stack(X,Y), [handempty, on(X,Y), clear(X)]) 
constraints(stack(X,Y), [X≠Y, Y≠table, X≠table]) 



Blocks world operators (Prolog) 

operator(stack(X,Y),  
         Precond [holding(X), clear(Y)], 
         Add [handempty, on(X,Y), clear(X)], 
         Delete [holding(X), clear(Y)], 

      Constr [X≠Y, Y≠table, X≠table]). 
 
 
operator(pickup(X), 
         [ontable(X), clear(X), handempty], 
         [holding(X)], 
         [ontable(X), clear(X), handempty], 
         [X≠table]). 

operator(unstack(X,Y),  
        [on(X,Y), clear(X), handempty], 
        [holding(X), clear(Y)], 
        [handempty, clear(X), on(X,Y)], 
        [X≠Y, Y≠table, X≠table]). 
 
 
operator(putdown(X),  
         [holding(X)], 
         [ontable(X), handempty, clear(X)], 
         [holding(X)], 
         [X≠table]). 
 



STRIPS planning 
• STRIPS maintains two additional data structures: 

– State List - all currently true predicates. 
– Goal Stack - push down stack of goals to be solved, with 

current goal on top 

•  If current goal not satisfied by present state, find 
operator that adds it and push operator and its 
preconditions (subgoals) on stack 

• When a current goal is satisfied, POP from stack 
• When an operator is on top stack, record the 

application of that operator on the plan sequence 
and use the operator’s add and delete lists to update 
the current state 



Typical BW planning problem 

Initial state: 
clear(a) 
clear(b) 
clear(c) 
ontable(a) 
ontable(b) 
ontable(c) 
handempty 

Goal: 
on(b,c) 
on(a,b) 
ontable(c) 

A B C 

A 
B 
C 

A plan: 
pickup(b) 
stack(b,c) 
pickup(a) 
stack(a,b) 



Trace (Prolog) 
strips([on(b,c),on(a,b),ontable(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[]) 
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)] 

strips([holding(b),clear(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[]) 
Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty] 

strips([ontable(b),clear(b),handempty],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[]) 
Applying pickup(b)  
strips([holding(b),clear(c)],[clear(a),clear(c),holding(b),ontable(a),ontable(c)],[pickup(b)]) 

Applying stack(b,c)  
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)]) 
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)] 

strips([holding(a),clear(b)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)]) 
Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty] 

strips([ontable(a),clear(a),handempty],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],
[stack(b,c),pickup(b)]) 

Applying pickup(a)  
strips([holding(a),clear(b)],[clear(b),holding(a),ontable(c),on(b,c)],[pickup(a),stack(b,c),pickup(b)]) 

Applying stack(a,b)  
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),ontable(c),on(a,b),on(b,c)],

[stack(a,b),pickup(a),stack(b,c),pickup(b)]) 
 
 
   



Strips in Prolog 
% strips(+Goals, +InitState, -Plan)  
strips(Goal, InitState, Plan):- 
  strips(Goal, InitState, [],  _, RevPlan), 
  reverse(RevPlan, Plan). 
 
% strips(+Goals,+State,+Plan,-NewState, NewPlan ) 
% Finished if each goal in Goals is true  
% in current State. 
strips(Goals, State, Plan, State, Plan) :- 
  subset(Goals,State). 
 

strips(Goals, State, Plan, NewState, NewPlan):- 
  % Goal is an unsatisfied goal. 
  member(Goal, Goals), 
  (\+ member(Goal, State)), 
  % Op is an Operator with Goal as a result. 
  operator(Op, Preconditions, Adds, Deletes,_), 
  member(Goal,Adds), 
  % Achieve the preconditions 
  strips(Preconditions, State, Plan, TmpState1, 

TmpPlan1),  
  % Apply the Operator 
  diff(TmpState1, Deletes, TmpState2), 
  union(Adds, TmpState2, TmpState3). 
  % Continue planning. 
  strips(GoalList, TmpState3, [Op|TmpPlan1], 

NewState, NewPlan). 
 
 
 
 



Another BW planning problem 

Initial state: 
clear(a) 
clear(b) 
clear(c) 
ontable(a) 
ontable(b) 
ontable(c) 
handempty 

Goal: 
on(a,b) 
on(b,c) 
ontable(c) 

A B C 

A 
B 
C 

A plan: 
 pickup(a) 

       stack(a,b) 
       unstack(a,b) 
       putdown(a) 
       pickup(b) 
       stack(b,c) 
       pickup(a) 
       stack(a,b) 
 

 



Yet Another BW planning problem 

Initial state: 
clear(c) 
ontable(a) 
on(b,a) 
on(c,b) 
handempty 

Goal: 
on(a,b) 
on(b,c) 
ontable(c) 

A 
B 
C 

A 
B 
C 

Plan: 
unstack(c,b) 
putdown(c) 
unstack(b,a) 
putdown(b) 
pickup(b) 
stack(b,a) 
unstack(b,a) 
putdown(b) 
pickup(a) 
stack(a,b) 
unstack(a,b) 
putdown(a) 
pickup(b) 
stack(b,c) 
pickup(a) 
stack(a,b) 

 
 

 



Yet Another BW planning problem 

Initial state: 
ontable(a) 
ontable(b) 
clear(a) 
clear(b) 
handempty 

Goal: 
on(a,b) 
on(b,a) 

A B 
Plan: 

?? 
 
 

 



Goal interaction 
•  Simple planning algorithms assume independent sub-goals 

– Solve each separately and concatenate the solutions 
•  The “Sussman Anomaly” is the classic example of the goal 

interaction problem:  
– Solving on(A,B) first (via unstack(C,A), stack(A,B)) is undone 

when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C)) 
– Solving on(B,C) first will be undone when solving on(A,B) 

• Classic STRIPS couldn’t handle this, although minor 
modifications can get it to do simple cases 

A B 
C 

Initial state 

A 
B 
C 

Goal state 



Sussman Anomaly 

A B 
C Initial state 

Goal state 

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)] 
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty] 
||Achieve clear(a) via unstack(_1584,a) with preconds: 
[on(_1584,a),clear(_1584),handempty] 
||Applying unstack(c,a)  
||Achieve handempty via putdown(_2691) with preconds: [holding(_2691)] 
||Applying putdown(c)  
|Applying pickup(a)  
Applying stack(a,b)  
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)] 
|Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty] 
||Achieve clear(b) via unstack(_5625,b) with preconds: 
[on(_5625,b),clear(_5625),handempty] 
||Applying unstack(a,b)  
||Achieve handempty via putdown(_6648) with preconds: [holding(_6648)] 
||Applying putdown(a)  
|Applying pickup(b)  
Applying stack(b,c)  
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)] 
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty] 
|Applying pickup(a)  
Applying stack(a,b)  

From 
[clear(b),clear(c),ontable(a),ontable(b),on(
c,a),handempty] 
  To [on(a,b),on(b,c),ontable(c)] 
  Do: 
       unstack(c,a) 
       putdown(c) 
       pickup(a) 
       stack(a,b) 
       unstack(a,b) 
       putdown(a) 
       pickup(b) 
       stack(b,c) 
       pickup(a) 
       stack(a,b) 
 

A 
B 
C 



Sussman Anomaly 

• Classic Strips assumed that once a goal had 
been satisfied it would stay satisfied 

• Simple Prolog version selects any currently 
unsatisfied goal to tackle at each iteration 

• This can handle this problem, at the expense 
of looping for other problems 

• What’s needed? -- notion of “protecting” a 
sub-goal so that it’s not undone by later step 



State-space planning 
• STRIPS searches thru a space of situations (where 

you are, what you have, etc.) 
– Plan is a solution found by “searching” through situations to 

get to goal 

• Progression planners search forward from initial 
state to goal state 
– Usually results in a high branching factor 

• Regression planners search backward from goal 
– OK if operators have enough information to go both ways 
– Can reduce branching: you’re only considering things 

relevant to goal 
– Handling a conjunction of goals is difficult (e.g., STRIPS) 



Plan-space planning 
• An alternative is to search through the space of 
plans, rather than situations 

• Start from a partial plan which is expanded and 
refined until a complete plan is generated 

• Refinement operators add constraints to the partial 
plan and modification operators for other changes 

• We can still use STRIPS-style operators:  
Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) 
Op(ACTION: RightSock, EFFECT: RightSockOn) 
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) 
Op(ACTION: LeftSock, EFFECT: leftSockOn) 

could result in a partial plan of  
[ … RightShoe … LeftShoe …]  



Partial-order planning 
• Linear planners build plans as totally ordered 

sequences of steps 
• Non-linear planners (aka partial-order planners) 

build plans as sets of steps with temporal constraints  
– constraints like S1<S2 if step S1 must come before S2 

• One refines a partially ordered plan (POP) by either: 
– adding a new plan step, or 
– adding a new constraint to the steps already in the plan 

• A POP can be linearized (converted to a totally 
ordered plan) by topological sorting 



Some example domains 

We’ll use some simple problems with a real world 
flavor to illustrate planning problems and algorithms 
• Putting on your socks and shoes in the morning 

– Actions like put-on-left-sock, put-on-right-shoe 
• Planning a shopping trip involving buying several 

kinds of items 
– Actions like go(X), buy(Y) 



A simple graphical notation 

Start Start 

Initial    State 
 
Goal      State 

Finish Finish 

LeftShoeOn   RightShoeOn 

(a) (b) 



Partial Order Plan vs. Total Order Plan 

The space of POPs is smaller than TOPs and hence involve less search 



Least commitment 
• Non-linear planners embody the principle of 

least commitment  
– only choose actions, orderings & variable bindings  

absolutely necessary, postponing other decisions 
– avoids early commitment to decisions that don’t 

really matter 
• Linear planners always choose to add a plan 

step in a particular place in the sequence  
• Non-linear planners choose to add a step and 

possibly some temporal constraints 



Non-linear plan 
A non-linear plan consists of 

(1) A set of steps {S1, S2, S3, S4…}  
Steps have operator descriptions, preconditions & post-conditions 

(2) A set of causal links { … (Si,C,Sj) …} 
Purpose of step Si is to achieve precondition C of step Sj 

(3) A set of ordering constraints { … Si<Sj … } 
Step Si must come before step Sj 



Non-linear plan 
A non-linear plan consists of 

(1) A set of steps {S1, S2, S3, S4…}  
Steps have operator descriptions, preconditions & post-conditions 

(2) A set of causal links { … (Si,C,Sj) …} 
Purpose of step Si is to achieve precondition C of step Sj 

(3) A set of ordering constraints { … Si<Sj … } 
Step Si must come before step Sj 

A non-linear plan is complete iff 
– Every step mentioned in (2) and (3) is in (1) 
– If Sj has prerequisite C, then there exists a causal link in (2) of the 

form (Si,C,Sj) for some Si 
– If (Si,C,Sj) is in (2) and step Sk is in (1), and Sk threatens (Si,C,Sj) 

(i.e., makes C false), then (3) contains either Sk<Si or Sj<Sk 



The initial plan 

Every plan starts the same way 

S1:Start 

S2:Finish 

Initial   State 

Goal   State 



Trivial example 
Operators: 

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) 
Op(ACTION: RightSock, EFFECT: RightSockOn) 
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) 
Op(ACTION: LeftSock, EFFECT: leftSockOn) 

S1:Start 

S2:Finish 

RightShoeOn  ^ LeftShoeOn 

Steps: {S1:[Op(Action:Start)], 

             S2:[Op(Action:Finish, 

    Pre: RightShoeOn^LeftShoeOn)]} 

 Links: {} 

Orderings: {S1<S2} 



Solution 

Start 

Left 
Sock 

Right 
Sock 

Right 
Shoe 

Left 
Shoe 

Finish 



POP constraints and search heuristics 
• Only add steps that achieve a currently 

unachieved precondition 
• Use a least-commitment approach:  

– Don’t order steps unless they need to be ordered 

• Honor causal links S1 → S2 that protect 
condition c:  
– Never add an intervening step S3 that violates c 
–  If a parallel action threatens c (i.e., has effect of negating or 

clobbering c), resolve threat by adding ordering links: 
•  Order S3 before S1 (demotion) 
•  Order S3 after S2 (promotion) 

c 



Partial-order planning example 

• Initially: at home; SM sells bananas, milk; 
HWS sells drills 

• Goal: Have milk, bananas, and a drill 

Start 

Finish 

At(Home) Sells(SM, Banana)     Sells(SM,Milk)  Sells(HWS,Drill) 

Have(Drill) Have(Milk)     Have(Banana) At(Home) 





Planning 
Start 

Buy(Drill) Buy(Milk) Buy(Bananas) 

Finish 

At(s), Sells(s,Drill) At(s), Sells(s,Milk) At(s), Sells(s,Bananas) 

Have(Drill), Have(Milk), Have(Bananas), At(Home) 

Ordering constraints 

Causal links (protected) 
Have light arrows at every bold arrow. 

Start 

Buy(Drill) Buy(Milk) Buy(Bananas) 

Finish 

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas) 

Have(Drill), Have(Milk), Have(Bananas), At(Home) 

Have(Bananas) Have(Milk) Have(Drill) 



Planning 

Start 

Buy(Drill) Buy(Milk) Buy(Bananas) 

Finish 

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas) 

Have(Drill), Have(Milk), Have(Bananas), At(Home) 

Go(SM) Go(HWS) 

At(x) At (x) 



Planning 

Start 

Buy(Drill) Buy(Milk) Buy(Bananas) 

Finish 

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas) 

Have(Drill), Have(Milk), Have(Bananas), At(Home) 

Go(SM) Go(HWS) 

At(Home) At (Home) 

Impasse à must backtrack & make another choice 



How to identify a dead end? 
S1 

S3 

S2 

c 
¬c 

S1 

S3 

S2 

c 

¬c 

S1 

S3 

S2 

c 

¬c 
(a) (b) 

Demotion 
(c) 
Promotion 

Resolving a threat 
The S3 action threatens 
the c precondition of S2 
if S3 neither precedes 
nor follows S2 and S3 
has an effect that 
negates c. 



At(SM),	Sells(SM,Milk)	At(HWS),	Sells(HWS,Drill)	 At(SM),	Sells(SM,Bananas)	

At(x)							

Buy(Milk,SM)	 Buy(Bananas,SM)	

At(l2)	

Go(l2,	SM)	

				At(l1)					

Go(l1,HWS)	

Buy(Drill,HWS)	

Have(Drill),	Have(Milk),	Have(Bananas),	At(Home)	

Consider the threats 



•  To resolve the third threat, make Buy(Drill) precede 
Go(SM) 
–  This resolves all three threats 

Resolve a threat 

At(SM),	Sells(SM,Milk)	At(HWS),	Sells(HWS,Drill)	 At(SM),	Sells(SM,Bananas)	

At(x)							

Buy(Milk,SM)	 Buy(Bananas,SM)	

At(l2)	

Go(l2,	SM)	

				At(l1)					

Go(l1,HWS)	

Buy(Drill,HWS)	

Have(Drill),	Have(Milk),	Have(Bananas),	At(Home)	

To resolve the third threat, make Buy(Drill) precede Go(SM) 
This resolves all three threats 



Go Home 

Establish At(l3) with l3=SM 

Buy(Milk,SM)	 Buy(Bananas,SM)	

At(x)							At(HWS)	At(Home)	

Go(Home,HWS)	

At(SM),	Sells(SM,Milk)	At(HWS),	Sells(HWS,Drill)	 At(SM),	Sells(SM,Bananas)	

Buy(Drill,HWS)	

Have(Drill),	Have(Milk),	Have(Bananas),	At(Home)	

At(SM)	

Go(SM,Home)	

Go(HWS,SM)	



Planning 

Start 

Buy(Drill) Buy(Milk) Buy(Bananas) 

Finish 

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas) 

Have(Drill), Have(Milk), Have(Bananas), At(Home) 

Go(SM) Go(HWS) 

At(Home) At (HWS) 

Go(Home) 
At(SM) 

2. by promotion 

1. Try to go from HWS to SM 
(i.e. a different way of achieving At(x)) 



Final Plan 

•  Establish At(l3) with l3=SM 

Buy(Milk,SM)	 Buy(Bananas,SM)	

At(x)							At(HWS)	At(Home)	

Go(Home,HWS)	

At(SM),	Sells(SM,Milk)	At(HWS),	Sells(HWS,Drill)	 At(SM),	Sells(SM,Bananas)	

Buy(Drill,HWS)	

Have(Drill),	Have(Milk),	Have(Bananas),	At(Home)	

At(SM)	

Go(SM,Home)	

Go(HWS,SM)	



If 2 would try At(HWS) or 
At(Home), threats could not 
be resolved. 

The final plan 



Real-world planning domains 

• Real-world domains are complex and don’t satisfy 
the assumptions of STRIPS or partial-order 
planning methods 

• Some of the characteristics we may need to handle:  
– Modeling and reasoning about resources 
– Representing and reasoning about time 
– Planning at different levels of abstractions 
– Conditional outcomes of actions 
– Uncertain outcomes of actions 
– Exogenous events 
–  Incremental plan development 
– Dynamic real-time re-planning 

} Scheduling 

} HTN planning 

} Planning under uncertainty 



Hierarchical decomposition 
• Hierarchical decomposition, or hierarchical task 

network (HTN) planning, uses abstract operators 
to incrementally decompose a planning problem 
from a high-level goal statement to a primitive 
plan network 

• Primitive operators represent actions that are 
executable, and can appear in the final plan 

• Non-primitive operators represent goals 
(equivalently, abstract actions) that require further 
decomposition (or operationalization) to be 
executed 

• There is no “right” set of primitive actions: One 
agent’s goals are another agent’s actions! 



HTN planning: example 



HTN operator: Example 

OPERATOR decompose 
PURPOSE: Construction 
CONSTRAINTS:  
    Length (Frame) <= Length (Foundation), 
    Strength (Foundation) > Wt(Frame) + Wt(Roof) 
        + Wt(Walls) + Wt(Interior) + Wt(Contents) 
PLOT: Build (Foundation) 
  Build (Frame) 
      PARALLEL 
       Build (Roof) 
            Build (Walls) 
      END PARALLEL 
      Build (Interior)     



HTN operator representation 
• Russell & Norvig explicitly represent causal links; 

these can also be computed dynamically by using a 
model of preconditions and effects 

• Dynamically computing causal links means that 
actions from one operator can safely be interleaved 
with other operators, and subactions can safely be 
removed or replaced during plan repair 

• Russell & Norvig’s representation only includes 
variable bindings, but more generally we can 
introduce a wide array of variable constraints 



Truth criterion 
• Determining if a formula is true at a particular point 

in a partially ordered plan is, in general, NP-hard 
•  Intuition: there are exponentially many ways to 

linearize a partially ordered plan 
• Worst case: if there are N actions unordered with 

respect to each other, there are N! linearizations 
• Ensuring soundness of truth criterion requires 

checking formula under all possible linearizations 
• Use heuristic methods instead to make planning 

feasible 
• Check later to ensure no constraints are violated 



Truth criterion in HTN planners 
• Heuristic: prove that there is one possible ordering 

of the actions that makes the formula true – but 
don’t insert ordering links to enforce that order 

• Such a proof is efficient 
– Suppose you have an action A1 with a precondition P 
– Find an action A2 that achieves P (A2 could be initial 

world state) 
– Make sure there is no action necessarily between A2 and 

A1 that negates P 

• Applying this heuristic for all preconditions in the 
plan can result in infeasible plans 



Increasing expressivity 
• Conditional effects 

–  Instead of having different operators for different 
conditions, use a single operator with conditional effects 

– Move (block1, from, to) and MoveToTable (block1, from) 
collapse into one Move (block1, from, to): 
•  Op(ACTION: Move(block1, from, to), 

PRECOND: On (block1, from) ^ Clear (block1) ^ Clear (to) 
EFFECT: On (block1, to) ^ Clear (from) ^ ~On(block1, 
from) ^ ~Clear(to) when to<>Table 

•  There’s a problem with this operator: can you spot what it 
is? 

• Negated and disjunctive goals 
• Universally quantified preconditions and effects 



Reasoning about resources 
•  Introduce numeric variables used as measures 
• These variables represent resource quantities, and 

change over the course of the plan 
• Certain actions may produce (increase the quantity 

of) resources 
• Other actions may consume (decrease the quantity 

of) resources 
• More generally, may want different resource types  

– Continuous vs. discrete 
– Sharable vs. nonsharable 
– Reusable vs. consumable vs. self-replenishing  



Other real-world planning issues 

• Conditional planning 
• Partial observability 
•  Information gathering actions 
• Execution monitoring and replanning 
• Continuous planning 
• Multi-agent (cooperative or adversarial) planning 



 Planning summary 
•  Planning representations 

–  Situation calculus 
–  STRIPS representation: Preconditions and effects 

•  Planning approaches 
–  State-space search (STRIPS, forward chaining, ….) 
–  Plan-space search (partial-order planning, HTN, …) 
–  Constraint-based search (GraphPlan, SATplan, …) 

•  Search strategies 
–  Forward planning 
–  Goal regression  
–  Backward planning 
–  Least-commitment 
–  Nonlinear planning 


