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Chapter	9	

Some	material	adopted	from	notes	by	Andreas	Geyer-Schulz,,	Chuck	Dyer	and	Mary	Getoor	



Resolu2on	

•  Resolu'on	is	a	sound	and	complete	
inference	procedure	for	unrestricted	FOL	

•  Reminder:	Resolu'on	rule	for	proposi'onal	
logic:	
– P1	∨	P2	∨	...	∨	Pn		
– ¬P1	∨	Q2	∨	...	∨	Qm		
– Resolvent:	P2	∨	...	∨	Pn	∨	Q2	∨	...	∨	Qm		

• We’ll	need	to	extend	this	to	handle	
quan'fiers	and	variables	



Two	Common	Normal	Forms	for	a	KB	
Conjunc2ve	normal	form	

• Set	of	sentences	expres-
sed	as	disjunc'ons	literals	

P	
Q	
~P	∨	~Q	∨	R	

Implica2ve	normal	form	
• Set	of	sentences	expressed	
as	implica'ons	where	leV	
hand	sides	are	conjunc'ons	
of	0	or	more	literals	

P		
Q	
P∧Q	=>	R	

•  Recall:	literal	is	an	atomic	expression	or	its	nega'on	
	e.g.,	loves(john,	X),		~hates(mary,	john)	

•  Any	KB	of	sentences	can	be	expressed	in	either	form	



Resolu2on	covers	many	cases	
• Modes	Ponens	
– from	P	and		P	→	Q				derive	Q									
– from	P	and	¬	P	∨	Q		derive	Q	

• Chaining	
– from	P	→	Q	and	Q	→	R											derive	P	→	R		
– from	(¬	P	∨	Q)	and	(¬	Q	∨	R)		derive	¬	P	∨	R	

• Contradic'on	detec'on	
– from	P	and	¬	P		derive	false	
– from	P	and	¬	P		derive	the	empty	clause	(=	false)	



Resolu2on	in	first-order	logic	
• Given	sentences	in	conjunc&ve	normal	form:	
–  	P1	∨	...	∨	Pn				and			Q1	∨	...	∨	Qm		
– Pi	and	Qi	are	literals,	i.e.,	posi've	or	negated	predicate	
symbol	with	its	terms	

• if	Pj	and	¬Qk	unify	with	subs'tu'on	list	θ,	then	
derive	the	resolvent	sentence:	
subst(θ,	P1∨…∨Pj-1∨Pj+1…Pn∨	Q1∨…Qk-1∨Qk+1∨…∨Qm)	

• Example	
–  from	clause	P(x,	f(a))	∨	P(x,	f(y))	∨	Q(y)		
– and	clause	¬P(z,	f(a))	∨	¬Q(z)	
– derive	resolvent	P(z,	f(y))	∨	Q(y)	∨	¬Q(z)		
– Using	θ	=	{x/z}		



A	resolu2on	proof	tree	



A	resolu2on	proof	tree	
~P(w)	v	Q(w)	 ~Q(y)	v	S(y)	

~P(w)	v	S(w)	

P(x)	v	R(x)	
~True	v	P(x)	v	R(x)	

S(x)	v	R(x)	

~R(w)	v	S(w)	

S(A)	v	S(A)			
S(A)	



Resolu2on	refuta2on	(1)	

• Given	a	consistent	set	of	axioms	KB	and	
goal	sentence	Q,	show	that	KB	|=	Q	

• Proof	by	contradic2on:		Add	¬Q	to	KB	
and	try	to	prove	false,	i.e.:	
(KB	|-	Q)	↔	(KB	∧	¬Q	|-	False)		



Resolu2on	refuta2on	(2)	
• Resolu'on	is	refuta2on	complete:	can	show	
sentence	Q	is	entailed	by	KB,	but	can’t	always	
generate	all	consequences	of	set	of	sentences	

• Can’t	prove	Q	is	not	entailed	by	KB	
• Resolu'on	won’t	always	give	an	answer	
since	entailment	is	only	semi-decidable	
– And	you	can’t	just	run	two	proofs	in	parallel,	
one	trying	to	prove	Q	and	the	other	trying	to	
prove	¬Q,	since	KB	might	not	entail	either	one	



Resolu2on	example	

•  KB:			
–  allergies(X)	→	sneeze(X)	
–  cat(Y)	∧	allergicToCats(X)	→	allergies(X)	
–  cat(felix)	
–  allergicToCats(mary)	

•  Goal:	
–  sneeze(mary)	



Refuta2on	resolu2on	proof	tree	

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergicToCats(z) ∨ allergies(z)	

¬cat(y) v sneeze(z) ∨ ¬allergicToCats(z) cat(felix) 

sneeze(z) v ¬allergicToCats(z) allergicToCats(mary) 

false 

¬sneeze(mary) sneeze(mary) 

w/z 

y/felix 

z/mary 

negated	query	

Notation 
old/new 



Some	tasks	to	be	done	
• Convert	FOL	sentences	to	conjunc've	normal	
form	(aka	CNF,	clause	form):	normaliza2on	
and	skolemiza2on	

• Unify	two	argument	lists,	i.e.,	how	to	find	their	
most	general	unifier	(mgu)	q:	unifica2on	

• Determine	which	two	clauses	in	KB	should	be	
resolved	next	(among	all	resolvable	pairs	of	
clauses)	:	resolu2on	(search)	strategy	



Conver2ng	
to	CNF	



Conver2ng	sentences	to	CNF	
1.	Eliminate	all	↔	connec'ves		

(P	↔	Q)	⇒		((P	→	Q)	^	(Q	→	P))		
2.	Eliminate	all	→	connec'ves		

(P	→	Q)	⇒	(¬P	∨	Q)		
3.	Reduce	the	scope	of	each	nega'on	symbol	to	a	single	predicate		
¬¬P	⇒	P	
¬(P	∨	Q)	⇒	¬P	∧	¬Q	
¬(P	∧	Q)	⇒	¬P	∨	¬Q	
¬(∀x)P	⇒	(∃x)¬P	
¬(∃x)P	⇒	(∀x)¬P		

4.	Standardize	variables:	rename	all	variables	so	that	each	
quan'fier	has	its	own	unique	variable	name	

See	the	func'on	
to_cnf()	in	logic.py	



Conver2ng	sentences	to	clausal	form	
Skolem	constants	and	func2ons	

5.	Eliminate	existen'al	quan'fica'on	by	introducing	Skolem	
constants/func'ons	
(∃x)P(x)	⇒	P(C)		
	C	is	a	Skolem	constant	(a	brand-new	constant	symbol	that	is	not	
used	in	any	other	sentence)	

(∀x)(∃y)P(x,y)	⇒	(∀x)P(x,	f(x))	
	since	∃	is	within	scope	of	a	universally	quan'fied	variable,	use	a	
Skolem	func2on	f	to	construct	a	new	value	that	depends	on	the	
universally	quan'fied	variable	

f	must	be	a	brand-new	func'on	name	not	occurring	in	any	other	
sentence	in	the	KB	

E.g.,	(∀x)(∃y)loves(x,y)	⇒	(∀x)loves(x,f(x))		
		In	this	case,	f(x)	specifies	the	person	that	x	loves	
		a	beper	name	might	be	oneWhoIsLovedBy(x)	



Conver2ng	sentences	to	clausal	form	
6.	Remove	universal	quan'fiers	by	(1)	moving	them	all	to	the	
leV	end;	(2)	making	the	scope	of	each	the	en're	sentence;	
and	(3)	dropping	the	“prefix”	part	
Ex:	(∀x)P(x)	⇒	P(x)	

7.	Put	into	conjunc've	normal	form	(conjunc'on	of	
disjunc'ons)	using	distribu've	and	associa've	laws	
(P	∧	Q)	∨	R	⇒	(P	∨	R)	∧	(Q	∨	R)	
(P	∨	Q)	∨	R	⇒	(P	∨	Q	∨	R)	

8.	Split	conjuncts	into	separate	clauses	
9.	Standardize	variables	so	each	clause	contains	only	variable	
names	that	do	not	occur	in	any	other	clause	

	
	



An	example	
(∀x)(P(x)	→	((∀y)(P(y)	→	P(f(x,y)))	∧	¬(∀y)(Q(x,y)	→	P(y))))		
	
2.	Eliminate	→	

(∀x)(¬P(x)	∨	((∀y)(¬P(y)	∨	P(f(x,y)))	∧	¬(∀y)(¬Q(x,y)	∨	P(y))))		
3.	Reduce	scope	of	nega'on	

(∀x)(¬P(x)	∨	((∀y)(¬P(y)	∨	P(f(x,y)))	∧(∃y)(Q(x,y)	∧	¬P(y))))		
4.	Standardize	variables	

(∀x)(¬P(x)	∨	((∀y)(¬P(y)	∨	P(f(x,y)))	∧(∃z)(Q(x,z)	∧	¬P(z))))		
5.	Eliminate	existen'al	quan'fica'on	

(∀x)(¬P(x)	∨((∀y)(¬P(y)	∨	P(f(x,y)))	∧(Q(x,g(x))	∧	¬P(g(x)))))		
6.	Drop	universal	quan'fica'on	symbols	

(¬P(x)	∨	((¬P(y)	∨	P(f(x,y)))	∧(Q(x,g(x))	∧	¬P(g(x)))))		
	



Example	
7.	Convert	to	conjunc'on	of	disjunc'ons	

(¬P(x)	∨	¬P(y)	∨	P(f(x,y)))	∧	(¬P(x)	∨	Q(x,g(x)))	∧	
							(¬P(x)	∨	¬P(g(x)))		

8.	Create	separate	clauses	
¬P(x)	∨	¬P(y)	∨	P(f(x,y))		
¬P(x)	∨	Q(x,g(x))		
¬P(x)	∨	¬P(g(x))		

9.	Standardize	variables	
¬P(x)	∨	¬P(y)	∨	P(f(x,y))		
¬P(z)	∨	Q(z,g(z))		
¬P(w)	∨	¬P(g(w))	



Unifica2on	



Unifica2on	
• Unifica'on	is	a	“pa[ern-matching”	procedure		
– Takes	two	atomic	sentences	(i.e.,	literals)	as	input	
– Returns	“failure”	if	they	do	not	match	and	a	
subs'tu'on	list,	θ,	if	they	do	

• That	is,	unify(p,q)	=	θ	means	subst(θ,	p)	=	subst(θ,	q)	
for	two	atomic	sentences,	p	and	q	

• θ	is	called	the	most	general	unifier	(mgu)		
• All	variables	in	the	given	two	literals	are	implicitly	
universally	quan'fied		

• To	make	literals	match,	replace	(universally	
quan'fied)	variables	by	terms	



Unifica2on	algorithm	
procedure	unify(p,	q,	θ)	
							Scan	p	and	q	leV-to-right	and	find	the	first	corresponding	
										terms	where	p	and	q	“disagree”	(i.e.,	p	and	q	not	equal)	
							If	there	is	no	disagreement,	return	θ		(success!)	
							Let	r	and	s	be	the	terms	in	p	and	q,	respec'vely,	
										where	disagreement	first	occurs	
							If	variable(r)	then	{	
										Let	θ	=	union(θ,	{r/s})	
										Return	unify(subst(θ,	p),	subst(θ,	q),	θ)	
							}	else	if	variable(s)	then	{	
										Let	θ	=	union(θ,	{s/r})	
										Return	unify(subst(θ,	p),	subst(θ,	q),	θ)	
							}	else	return	“Failure”	
					end	
	

See	the	func'on	
unify()	in	logic.py	



Unifica2on:	Remarks	
• Unify	is	a	linear-'me	algorithm	that	returns	the	
most	general	unifier	(mgu),	i.e.,	shortest-length	
subs'tu'on	list	that	makes	the	two	literals	match	

• In	general,	there’s	no	unique	minimum-length	
subs'tu'on	list,	but	unify	returns	one	of	minimum	
length	

• Common	constraint:	A	variable	can	never	be	
replaced	by	a	term	containing	that	variable	
Example:	x/f(x)	is	illegal.		
– This	“occurs	check”	should	be	done	in	the	above	
pseudo-code	before	making	the	recursive	calls	



Unifica2on	examples	
• Example:	
–  parents(x,	father(x),	mother(Bill))		
–  parents(Bill,	father(Bill),	y)	
–  {x/Bill,y/mother(Bill)}	yields	parents(Bill,father(Bill),	mother(Bill))	

• Example:	
–  parents(x,	father(x),	mother(Bill))	
–  parents(Bill,	father(y),	z)	
–  {x/Bill,y/Bill,z/mother(Bill)}	yields	parents(Bill,father(Bill),	mother(Bill))	

• Example:	
–  parents(x,	father(x),	mother(Jane))	
–  parents(Bill,	father(y),	mother(y))	
–  Failure	



Resolu2on	
example	



Prac2ce	example	
	Did	Curiosity	kill	the	cat	

• Jack	owns	a	dog	
• Every	dog	owner	is	an	animal	lover	
• No	animal	lover	kills	an	animal	
• Either	Jack	or	Curiosity	killed	the	cat,	
who	is	named	Tuna.	
• 	Did	Curiosity	kill	the	cat?	



Prac2ce	example	
	Did	Curiosity	kill	the	cat	

•  Jack	owns	a	dog.	Every	dog	owner	is	an	animal	lover.	No	
animal	lover	kills	an	animal.	Either	Jack	or	Curiosity	killed	the	
cat,	who	is	named	Tuna.	Did	Curiosity	kill	the	cat?	

•  These	can	be	represented	as	follows:	
A.	(∃x)	Dog(x)	∧	Owns(Jack,x)	
B.	(∀x)	((∃y)	Dog(y)	∧	Owns(x,	y))	→	AnimalLover(x)	
C.	(∀x)	AnimalLover(x)	→	((∀y)	Animal(y)	→	¬Kills(x,y))	
D.	Kills(Jack,Tuna)	∨	Kills(Curiosity,Tuna)	
E.	Cat(Tuna)	
F.	(∀x)	Cat(x)	→	Animal(x)		
G.	Kills(Curiosity,	Tuna)	

GOAL	



• Convert	to	clause	form	
A1.	(Dog(D))		
A2.	(Owns(Jack,D))	
B.	(¬Dog(y),	¬Owns(x,	y),	AnimalLover(x))	
C.	(¬AnimalLover(a),	¬Animal(b),	¬Kills(a,b))	
D.	(Kills(Jack,Tuna),	Kills(Curiosity,Tuna))	
E.	Cat(Tuna)	
F.	(¬Cat(z),	Animal(z))	

• Add	the	nega2on	of	query:		
¬G:	¬Kills(Curiosity,	Tuna)	

∃x	Dog(x)	∧	Owns(Jack,x)	
∀x	(∃y)	Dog(y)	∧	Owns(x,	y)	→	AnimalLover(x)	
∀x	AnimalLover(x)	→	(∀y	Animal(y)	→	

¬Kills(x,y))	
Kills(Jack,Tuna)	∨	Kills(Curiosity,Tuna)	
Cat(Tuna)	
∀x	Cat(x)	→	Animal(x)		
Kills(Curiosity,	Tuna)	



R1:	¬G,	D,	{} 	 	 	(Kills(Jack,	Tuna))	
R2:	R1,	C,	{a/Jack,	b/Tuna}	(~AnimalLover(Jack),	 	 	 	 	

																																											~Animal(Tuna))	
R3:	R2,	B,	{x/Jack}	 	 	(~Dog(y),	~Owns(Jack,	y),	 	 	 	

	 			~Animal(Tuna))	
R4:	R3,	A1,	{y/D} 	 	(~Owns(Jack,	D),		 	 															 																																										

~Animal(Tuna))	
R5:	R4,	A2,	{} 	 													(~Animal(Tuna))	
R6:	R5,	F,	{z/Tuna} 	 	(~Cat(Tuna))	
R7:	R6,	E,	{}	 	 	 	FALSE	

The	resolu2on	refuta2on	proof		



The	proof	tree	

¬G	 D	

C	

B	

A1	

A2	

F	

E	

R1:	K(J,T)	

R2:	¬AL(J)	∨	¬A(T)	

R3:	¬D(y)	∨	¬O(J,y)	∨	¬A(T)	

R4:	¬O(J,D),	¬A(T)	

R5:	¬A(T)	

R6:	¬C(T)	

R7:	FALSE	

{}	

{a/J,b/T}	

{x/J}	

{y/D}	

{}	

{z/T}	

{}	



Resolu2on	
search	

strategies	



Resolu2on	Theorem	Proving	as	search	
• Resolu'on	is	like	the	bo[om-up	construc2on	of	a	
search	tree,	where	leaves	are	clauses	produced	by	
KB	and	nega'on	of	the	goal	

• When	a	pair	of	clauses	generates	a	new	resolvent	
clause,	add	a	new	node	to	the	tree	with	arcs	
directed	from	the	resolvent	to	parent	clauses	

• Resolu2on	succeeds	when	node	containing	False	is	
produced,	becoming	root	node	of	the	tree	

• Strategy	is	complete	if	it	guarantees	that	empty	
clause	(i.e.,	false)	can	be	derived	when	it’s	entailed	



Strategies	
• There	are	a	number	of	general	(domain-
independent)	strategies	that	are	useful	in	
controlling	a	resolu'on	theorem	prover	

• Well	briefly	look	at	the	following:	
– Breadth-first	
– Length	heuris'cs	
– Set	of	support	
– Input	resolu'on	
– Subsump'on	
– Ordered	resolu'on	



Example	

1.  Battery-OK ∧ Bulbs-OK → Headlights-Work 

2.  Battery-OK ∧	Starter-OK → Empty-Gas-Tank ∨ Engine-Starts 

3.  Engine-Starts → Flat-Tire ∨ Car-OK 

4.  Headlights-Work 

5.  Battery-OK 

6.  Starter-OK  

7.  ¬Empty-Gas-Tank  

8.  ¬Car-OK  

9.  Goal: Flat-Tire ? 



Example	

1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 

2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 

3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 

4.  Headlights-Work 

5.  Battery-OK 

6.  Starter-OK  

7.  ¬Empty-Gas-Tank  

8.  ¬Car-OK  

9.  ¬Flat-Tire negated goal 



Breadth-first	search	

• Level	0	clauses	are	the	original	axioms	and	
the	nega'on	of	the	goal	

• Level	k	clauses	are	the	resolvents	computed	
from	two	clauses,	one	of	which	must	be	
from	level	k-1	and	the	other	from	any	
earlier	level	

• Compute	all	possible	level	1	clauses,	then	all	
possible	level	2	clauses,	etc.		

• Complete,	but	very	inefficient	



BFS	example	
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 
10.  ¬Battery-OK ∨ ¬Bulbs-OK 
11.  ¬Bulbs-OK ∨ Headlights-Work 
12.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Flat-Tire ∨ Car-OK 
13.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
14.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
15.  ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts 
16.  … [and we’re still only at Level 1!] 

1,4 
1,5 
2,3 
2,5 
2,6 
2,7 
 



Length	heuris2cs	

• Shortest-clause	heuris2c:		
Generate	a	clause	with	the	fewest	literals	
first	

• Unit	resolu2on:		
Prefer	resolu'on	steps	in	which	at	least	one	
parent	clause	is	a	“unit	clause,”	i.e.,	a	clause	
containing	a	single	literal	
– Not	complete	in	general,	but	complete	for	
Horn	clause	KBs		



Unit	resolu'on	example	
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 
10.  ¬Bulbs-OK ∨ Headlights-Work 
11.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
12.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
13.  ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts 
14.  ¬Engine-Starts ∨ Flat-Tire 
15.  ¬Engine-Starts ¬ Car-OK 
16.  … [this doesn’t seem to be headed anywhere either!] 

1,5 
2,5 
2,6 
2,7 
3,8 
3,9 



Set	of	support	

• At	least	one	parent	clause	must	be	nega'on	
of	the	goal	or	a	“descendant”	of	such	a	goal	
clause	(i.e.,	derived	from	a	goal	clause)	

• When	there’s	a	choice,	take	the	most	recent	
descendant	

• Complete,	assuming	all	possible	set-of-
support	clauses	are	derived		

• Gives	a	goal-directed	character	to	the	
search	(e.g.,	like	backward	chaining)	



Set	of	support	example	
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 
10.  ¬Engine-Starts ∨ Car-OK 
11.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK 
12.  ¬Engine-Starts 
13.  ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK 
14.  ¬Battery-OK ∨ Empty-Gas-Tank ∨ Car-OK 
15.  ¬Battery-OK ∨ ¬Starter-OK ∨ Car-OK 
16.  … [a bit more focused, but we still seem to be wandering] 

9,3 
10,2 
10,8 
11,5 
11,6 
11,7 



Unit	resolu'on	+	set	of	support	example	
1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 
10.  ¬Engine-Starts ∨ Car-OK 
11.  ¬Engine-Starts 
12.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank 
13.  ¬Starter-OK ∨ Empty-Gas-Tank 
14.  Empty-Gas-Tank 
15.  FALSE 
[Hooray! Now that’s more like it!] 

9,3 
10,8 
11,2 
12,5 
13,6 
14,7 



Simplifica2on	heuris2cs	
•  Subsump2on:	
Eliminate	sentences	that	are	subsumed	by	(more	
specific	than)	an	exis'ng	sentence	to	keep	KB	small	
–  If	P(x)	is	already	in	the	KB,	adding	P(A)	makes	no	sense	–	
P(x)	is	a	superset	of	P(A)	

– Likewise	adding	P(A)	∨	Q(B)	would	add	nothing	to	the	KB	
•  Tautology:		
Remove	any	clause	containing	two	complementary	
literals	(tautology)	

•  Pure	symbol:	
If	a	symbol	always	appears	with	the	same	“sign,”	
remove	all	the	clauses	that	contain	it	



Example	(Pure	Symbol)	

1.  ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work 
2.  ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts 
3.  ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK 
4.  Headlights-Work 
5.  Battery-OK 
6.  Starter-OK  
7.  ¬Empty-Gas-Tank  
8.  ¬Car-OK  
9.  ¬Flat-Tire 



Input	resolu2on	

• At	least	one	parent	must	be	an	input	
sentence	(i.e.,	either	a	sentence	in	the	
original	KB	or	the	nega'on	of	the	goal)		

• Not	complete	in	general,	but	complete	for	
Horn	clause	KBs	

• Linear	resolu'on	
– Extension	of	input	resolu'on	
– One	of	the	parent	sentences	must	be	an	input	
sentence	or	an	ancestor	of	the	other	sentence	

– Complete	



Ordered	resolu2on	
• Search	for	resolvable	sentences	in	order	
(leV	to	right)	

• This	is	how	Prolog	operates	
• Resolve	the	first	element	in	the	sentence	
first	

• This	forces	the	user	to	define	what	is	
important	in	genera'ng	the	“code”	

• The	way	the	sentences	are	wripen	controls	
the	resolu'on	


