’aln Logical

Inference 3
resolution

o

Chapter 9

Resolution

e Resolution is a sound and complete
inference procedure for unrestricted FOL

e Reminder: Resolution rule for propositional
logic:

—-P,vP,v..VvP,
-=P,vQ,v..v(Q,
—Resolvent: P, v...vP, vQ,v..vQ

e \We'll need to extend this to handle
quantifiers and variables

m

Two Common Normal Forms for a KB

Implicative normal form Conjunctive normal form
e Set of sentences expressed e Set of sentences expres-

as implications where left sed as disjunctions literals
hand sides are conjunctions p
of O or more literals Q

P “Pv~QvVvR

Q

PAQ=>R

e Recall: literal is an atomic expression or its negation
e.g., loves(john, X), ~hates(mary, john)
* Any KB of sentences can be expressed in either form

Resolution covers many cases

e Modes Ponens

—from Pand P—=Q derive Q
—from Pand = P v Q derive Q
e Chaining
—fromP—=Qand Q —R derive P —R
—from (= PvQ)and (- Qv R) derive = P v R
e Contradiction detection

—from P and — P derive false
—from P and = P derive the empty clause (= false)

Resolution in first-order logic

e Given sentences in conjunctive normal form:
- P,v...vP, and Q;v..vQ,

— P, and Q, are literals, i.e., positive or negated predicate
symbol with its terms

o if P, and —Q, unify with substitution list 8, then
derive the resolvent sentence:
subst(6, Pyv...vP, VP, ..P v QVv..Q 1 VQy,yV...vQ,)
e Example
— from clause P(x, f(a)) v P(x, f(y)) v Q(y)
—and clause =P(z, f(a)) v =Q(z)
— derive resolvent P(z, f(y)) v Q(y) v = Q(z)
— Using 0 = {x/z}

A resolution proof tree

P(w) = QO(w)

Q(v) = S(v)

P(w) = S(w) True = P(x) VR(x)

True = S(x) VR(x) R(z) = 8(z)

True = S(A)

A resolution proof tree

~P(w) v Q(w)

P(w) = QO(w)

~Q(y) v S(y)
Q(y) = S(v)

P(w) = S(w)

~True v P(x) v R(x)
P(x) v R(x)

True = P(x) VR(x)

~P(w) v S(w)

S(x) v R(x)

W ~R(w) v S(w)

True = S(x) VR(x)

R(z) = S(z)

True = S(A)

S(A) v S(A)

S(A)

Resolution refutation (1)

e Given a consistent set of axioms KB and
goal sentence Q, show that KB |=Q

* Proof by contradiction: Add —=Q to KB
and try to prove false, i.e.:

(KB |- Q) <> (KB A —Q |- False)

Resolution refutation (2)

e Resolution is refutation complete: can show
sentence Q is entailed by KB, but can’t always
generate all consequences of set of sentences

e Can’t prove Q is not entailed by KB

e Resolution won’t always give an answer
since entailment is only semi-decidable
—And you can’t just run two proofs in parallel,

one trying to prove Q and the other trying to
prove = Q, since KB might not entail either one

Resolution example

o KB:
— allergies(X) — sneeze(X)
— cat(Y) A allergicToCats(X) — allergies(X)
— cat(felix)
— allergicToCats(mary)
e Goal:

— sneeze(mary)

Refutation resolution proof tree

—allergies(w) v sneeze(w) —cat(y) v —allergicToCats(z) v allergies(z)
w/z
—cat(y) v sneeze(z) v —allergicToCats(z) cat(felix)
y/felix
sneeze(z) v —allergicToCats(z) allergicToCats(mary)
\Z/yy/
sneeze(mary) —sneeze(mary)
Notation \/
old/new false

negated query

Some tasks to be done

e Convert FOL sentences to conjunctive normal
form (aka CNF, clause form): normalization
and skolemization

e Unify two argument lists, i.e., how to find their
most general unifier (mgu) g: unification

e Determine which two clauses in KB should be
resolved next (among all resolvable pairs of
clauses) : resolution (search) strategy

Converting
to CNF

Converting sentences to CNF

1. Eliminate all &> connectives

(P> Q)= ((P— Q)" (Q— P)) See the functign
to_cnf() in logic.py

2. Eliminate all — connectives
(P—Q)=(-PvQ)

3. Reduce the scope of each negation symbol to a single predicate
--P=P
-(PvQ)=-PA-Q
-(PAQ)=-Pv -Q
= (Vx)P = (dx)-P
- (Ix)P = (Vx)=P

4. Standardize variables: rename all variables so that each
guantifier has its own unique variable name

Converting sentences to clausal form
Skolem constants and functions

5. Eliminate existential quantification by introducing Skolem
constants/functions
(Ax)P(x) = P(C)

Cis a Skolem constant (a brand-new constant symbol that is not
used in any other sentence)

(Vx)3y)P(x,y) = (Vx)P(x, f(x))

since d is within scope of a universally quantified variable, use a
Skolem function f to construct a new value that depends on the
universally quantified variable

f must be a brand-new function name not occurring in any other
sentence in the KB

E.g., (Vx)(3y)loves(x,y) = (Vx)loves(x,f(x))
In this case, f(x) specifies the person that x loves
a better name might be oneWholsLovedBy(x)

Converting sentences to clausal form

6. Remove universal quantifiers by (1) moving them all to the
left end; (2) making the scope of each the entire sentence;
and (3) dropping the “prefix” part

Ex: (Vx)P(x) = P(x)

7. Put into conjunctive normal form (conjunction of

disjunctions) using distributive and associative laws

(PAQ VR=(PVR)A(QVR)
(PvQ)vR=(PvQvVR)
8. Split conjuncts into separate clauses

9. Standardize variables so each clause contains only variable
names that do not occur in any other clause

An example
(Vx)(P(x) = ((Yy)(P(y) = P(F(x,y))) A =(¥y)(Qlx,y) — P(y))))

2. Eliminate —

(Vx)(=P(x) v ((Wy)(=P(y) v P(f(x,y))) A =(Vy)(=Q(x,y) v P(y))))
3. Reduce scope of negation

(Vx)(=P(x) v ((Vy)(=P(y) v P(f(x,y))) A(dy)(Q(x,y) A =P(y))))
4. Standardize variables

(Vx)(=P(x) v ((Vy)(=P(y) v P(f(x,y))) A(Jz)(Q(x,2) A =P(z))))
5. Eliminate existential quantification

(Vx)(=P(x) v((Vy)(=P(y) v P(f(x,y))) A(Q(x,8(x)) A =P(g(x)))))
6. Drop universal guantification symbols

(=P(x) v ((=P(y) v P(f(x,y))) A(Q(x,g(x)) A =P(g(x)))))

Example

7. Convert to conjunction of disjunctions
(=P(x) v =P(y) v P(f(x,y))) A (=P(x) v Q(x,8(x))) A
(=P(x) v =P(g(x)))
8. Create separate clauses
=P(x) v =P(y) v P(f(x,y))
=P(x) v Q(x,8(x))
=P(x) v =P(g(x))
9. Standardize variables
=P(x) v =P(y) v P(f(x,y))
-P(z) v Q(z,8(2))
=P(w) v =P(g(w))

Unification

Unification
e Unification is a “pattern-matching” procedure

—Takes two atomic sentences (i.e., literals) as input

—Returns “failure” if they do not match and a
substitution list, 6, if they do

e That is, unify(p,q) = 0 means subst(d, p) = subst(sG, q)
for two atomic sentences, p and g

e O is called the most general unifier (mgu)

e All variables in the given two literals are implicitly
universally quantified

e To make literals match, replace (universally
quantified) variables by terms

Unification algorithm

procedure unify(p, g, 6)
Scan p and q left-to-right and find the first corresponding
terms where p and q “disagree” (i.e., p and g not equal)
If there is no disagreement, return 6 (success!)
Let r and s be the terms in p and q, respectively,
where disagreement first occurs
If variable(r) then {
Let © = union(6, {r/s})
Return unify(subst(6, p), subst(6, q), 6)
} else if variable(s) then {
Let ©6 = union(6, {s/r})
Return unify(subst(0, p), subst(8, q), 6)
} else return “Failure”

See the function
unify() in logic.py

end

Unification: Remarks

e Unify is a linear-time algorithm that returns the
most general unifier (mgu), i.e., shortest-length
substitution list that makes the two literals match

e |n general, there’s no unique minimum-length

substitution list, but unify returns one of minimum
length

e Common constraint: A variable can never be
replaced by a term containing that variable
Example: x/f(x) is illegal.

— This “occurs check” should be done in the above
pseudo-code before making the recursive calls

Unification examples

e Example:
— parents(x, father(x), mother(Bill))
— parents(Bill, father(Bill), y)
— {x/Bill,y/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill))

e Example:

— parents(x, father(x), mother(Bill))

— parents(Bill, father(y), z)

— {x/Bill,y/Bill,z/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill))
e Example:

— parents(x, father(x), mother(Jane))

— parents(Bill, father(y), mother(y))
— Failure

Resolution
example

Practice example
Did Curiosity kill the cat

eJack owns a dog
eEvery dog owner is an animal lover

eNo animal lover kills an anima

eEither Jack or Curiosity killed the cat,
who is named Tuna.

e Did Curiosity kill the cat?

Practice example
Did Curiosity kill the cat

e Jack owns a dog. Every dog owner is an animal lover. No
animal lover kills an animal. Either Jack or Curiosity killed the
cat, who is named Tuna. Did Curiosity kill the cat?

e These can be represented as follows:
A. (dx) Dog(x) A Owns(Jack,x)
B. (Vx) ((dy) Dog(y) A Owns(x, y)) — AnimalLover(x)
C. (Vx) AnimalLover(x) = ((Vy) Animal(y) — =Kills(x,y))
D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. (Vx) Cat(x) — Animal(x)

/ GOAL
G. Kills(Curiosity, Tuna)

dx Dog(x) A Owns(Jack,x)

Vx (dy) Dog(y) A Owns(x, y) — AnimalLover(x)
Vx AnimalLover(x) — (Vy Animal(y) —

= Kills(x,y))
() Convert to Clause form E!Ls(gjrcllg,)Tuna) v Kills(Curiosity, Tuna)
Al. (Dog(D)) Vx Cat(x) — Animal(x)

Kills(Curiosity, Tuna)

A2. (Owns(Jack,D))
B. (—=Dog(y), —Owns(x, y), AnimalLover(x))
C. (=AnimalLover(a), =Animal(b), —=Kills(a,b))
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. (—Cat(z), Animal(z))
e Add the negation of query:
- G: =Kills(Curiosity, Tuna)

The resolution refutation proof

R1: =G, D, {} (Kills(Jack, Tuna))

R2: R1, C, {a/Jack, b/Tuna}(~AnimalLover(Jack),
~Animal(Tuna))

R3: R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y),
~Animal(Tuna))
R4: R3, Al, {y/D} (~Owns(Jack, D),
~Animal(Tuna))
R5: R4, A2, {} (~Animal(Tuna))
R6: R5, F, {z/Tuna} (~Cat(Tuna))

R7:R6, E, {} FALSE

The proof tree

o/

R1: K(J,T)

C
\{a\/J,b/y

R2: =AL(J) v ~A(T) B

\{X/J} /

R3: =D(y) v =0O(J,y) v =A(T) Al

\ {v/D}/

R4: -0(J,D), —A(T)

R7: FALSE

Resolution
search
strategies

Resolution Theorem Proving as search

e Resolution is like the bottom-up construction of a
search tree, where leaves are clauses produced by
KB and negation of the goal

e When a pair of clauses generates a new resolvent

clause, add a new node to the tree with arcs
directed from the resolvent to parent clauses

e Resolution succeeds when node containing False is
produced, becoming root node of the tree

e Strategy is complete if it guarantees that empty
clause (i.e., false) can be derived when it’s entailed

Strategies

e There are a number of general (domain-
independent) strategies that are useful in
controlling a resolution theorem prover

e Well briefly look at the following:
—Breadth-first
—Length heuristics
—Set of support
—Input resolution
—Subsumption
—Ordered resolution

O o N O U A D=

Example

Battery-OK A Bulbs-OK — Headlights-Work

Battery-OK a Starter-OK — Empty-Gas-Tank v Engine-Starts
Engine-Starts — Flat-Tire v Car-OK

Headlights-Work

Battery-OK

Starter-OK

- Empty-Gas-Tank

-Car-OK

Goal: Flat-Tire ?

O 0 N O U A WD

Example

- Battery-OK v -Bulbs-OK v Headlights-Work

- Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
-Engine-Starts v Flat-Tire v Car-OK

Headlights-Work

Battery-OK

Starter-OK

-Empty-Gas-Tank

-Car-OK

-Flat-Tire <= negated goal

Breadth-first search

e evel O clauses are the original axioms and
the negation of the goal

e evel k clauses are the resolvents computed
from two clauses, one of which must be
from level k-1 and the other from any
earlier level

e Compute all possible level 1 clauses, then all
possible level 2 clauses, etc.

e Complete, but very inefficient

1,4
1,5
2.3
25
2.6
2.7

©ONOUhAWWNE

16

BFS example

- Battery-OK v -Bulbs-OK v Headlights-Work

-Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
-Engine-Starts v Flat-Tire v Car-OK

Headlights-Work

Battery-OK

Starter-OK

-Empty-Gas-Tank

-Car-OK

- Flat-Tire

- Battery-OK v -Bulbs-OK

. =Bulbs-OK v Headlights-Work

- Battery-OK v -Starter-OK v Empty-Gas-Tank v Flat-Tire v Car-OK

. -~ Starter-OK v Empty-Gas-Tank v Engine-Starts

- Battery-OK v Empty-Gas-Tank v Engine-Starts

. —~Battery-OK - Starter-OK v Engine-Starts

... [and we’ re still only at Level 1!]

Length heuristics

e Shortest-clause heuristic:
Generate a clause with the fewest literals
first

e Unit resolution:
Prefer resolution steps in which at least one
parent clause is a “unit clause,” i.e., a clause
containing a single literal

—Not complete in general, but complete for
Horn clause KBs

1,5
2,5
2,6
2,7
3,8
3,9

©ONOUhAWWNE

16

Unit resolution example

- Battery-OK v -Bulbs-OK v Headlights-Work

-Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts

-Engine-Starts v Flat-Tire v Car-OK
Headlights-Work

Battery-OK

Starter-OK

-Empty-Gas-Tank

-Car-OK

- Flat-Tire

-Bulbs-OK v Headlights-Work

. —~Starter-OK v Empty-Gas-Tank v Engine-Starts

- Battery-OK v Empty-Gas-Tank v Engine-Starts

. —~Battery-OK - Starter-OK v Engine-Starts

-Engine-Starts v Flat-Tire

. ~Engine-Starts - Car-OK

... [this doesn’ t seem to be headed anywhere either!]

Set of support

e At least one parent clause must be negation
of the goal or a “descendant” of such a goal
clause (i.e., derived from a goal clause)

e When there’s a choice, take the most recent
descendant

e Complete, assuming all possible set-of-
support clauses are derived

e Gives a goal-directed character to the
search (e.g., like backward chaining)

Set of support example

1. -Battery-OK v -Bulbs-OK v Headlights-Work
2. -Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
3. -Engine-Starts v Flat-Tire v Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
/. —-Empty-Gas-Tank
8. -Car-OK
9. -Flat-Tire
9,3 10. -Engine-Starts v Car-OK
10,2 11. -Battery-OK v -Starter-OK v Empty-Gas-Tank v Car-OK
10,8 12. -Engine-Starts
11,5 13. -Starter-OK v Empty-Gas-Tank v Car-OK
11,6 14. -Battery-OK v Empty-Gas-Tank v Car-OK
11,7 15. -Battery-OK v -Starter-OK v Car-OK

16. ... [a bit more focused, but we still seem to be wandering]

Unit resolution + set of support example

- Battery-OK v -Bulbs-OK v Headlights-Work
-Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
-Engine-Starts v Flat-Tire v Car-OK
Headlights-Work
Battery-OK
Starter-OK
-Empty-Gas-Tank
-Car-OK
- Flat-Tire
-Engine-Starts v Car-OK
. ~Engine-Starts
- Battery-OK v -Starter-OK v Empty-Gas-Tank
12,5 . —~Starter-OK v Empty-Gas-Tank
13,6 . Empty-Gas-Tank
14,7 15. FALSE
[Hooray! Now that’ s more like it!]

©ONOUhAWWNE

= O
-O -

9,3
10,8
11,2

N e O e
.hwl_\Jl—-

Simplification heuristics

e Subsumption:
Eliminate sentences that are subsumed by (more
specific than) an existing sentence to keep KB small

— If P(x) is already in the KB, adding P(A) makes no sense —
P(x) is a superset of P(A)

— Likewise adding P(A) v Q(B) would add nothing to the KB
e Tautology:
Remove any clause containing two complementary
literals (tautology)
e Pure symbol:

If a symbol always appears with the same “sign,”
remove all the clauses that contain it

OCoOoNOUhWNH

Example (Pure Symbol)

e=RBaftem Ol —Dulbe O Hoadliabtoarl
-Battery-OK v -Starter-OK v Empty-Gas-Tank v Engine-Starts
-Engine-Starts v Flat-Tire v Car-OK
=reTatgiTes=ivore
Battery-OK
Starter-OK
-Empty-Gas-Tank
-Car-OK
~Flat-Tire

Input resolution

e At least one parent must be an input
sentence (i.e., either a sentence in the
original KB or the negation of the goal)

e Not complete in general, but complete for
Horn clause KBs

e Linear resolution
— Extension of input resolution

—One of the parent sentences must be an input
sentence or an ancestor of the other sentence

—Complete

Ordered resolution

e Search for resolvable sentences in order
(left to right)

e This is how Prolog operates

e Resolve the first element in the sentence
first

e This forces the user to define what is
important in generating the “code”

e The way the sentences are written controls
the resolution

