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First-Order	Logic:	
Review	



First-order	logic	
• First-order	logic	(FOL)	models	the	world	in	terms	of		

– Objects,	which	are	things	with	individual	iden==es	
– Proper9es	of	objects	that	dis=nguish	them	from	others	
– Rela9ons	that	hold	among	sets	of	objects	
– Func9ons,	which	are	a	subset	of	rela=ons	where	there	is	
only	one	“value”	for	any	given	“input”	

• Examples:		
– Objects:	Students,	lectures,	companies,	cars	...		
– Rela=ons:	Brother-of,	bigger-than,	outside,	part-of,	has-
color,	occurs-aJer,	owns,	visits,	precedes,	...		

– Proper=es:	blue,	oval,	even,	large,	...		
– Func=ons:	father-of,	best-friend,	second-half,	more-than	...		



User	provides	
• Constant	symbols	represen=ng	individuals	in	the	
world	
– BarackObama,	3,	Green	

• Func9on	symbols,	map	individuals	to	individuals	
– father_of(SashaObama)	=	BarackObama	
– color_of(Sky)	=	Blue		

• Predicate	symbols,	map	individuals	to	truth	values	
– greater(5,3)	
– green(Grass)		
– color(Grass,	Green)		



FOL	Provides	

• Variable	symbols	
– E.g.,	x,	y,	foo	

• Connec9ves	
– Same	as	in	proposi=onal	logic:	not	(¬),	
and	(∧),	or	(∨),	implies	(→),	iff	(↔)	

• Quan9fiers	
– Universal	∀x	or		(Ax)	
– Existen=al	∃x	or	(Ex)		



Sentences:	built	from	terms	and	atoms	
• A	term	(deno=ng	a	real-world	individual)	is	a	
constant	symbol,	variable	symbol,	or	n-place	
func=on	of	n	terms,	e.g.:	
– Constants:	john,	umbc	
– Variables:	x,	y,	z	
– Func=ons:	mother_of(john),	phone(mother(x))	

• Ground	terms	have	no	variables	in	them	
– Ground:	john,		father_of(father_of(john))	
– Not	Ground:	father_of(X)	



Sentences:	built	from	terms	and	atoms	
• An	atomic	sentence	(which	has	value	true	or	
false)	is	an	n-place	predicate	of	n	terms,	e.g.:	
– green(Kermit))	
– between(Philadelphia,	Bal=more,	DC)	
– loves(X,	mother(X))	

• A	complex	sentence	is	formed	from	atomic	
sentences	connected	by	logical	connec=ves:	

¬P,	P∨Q,	P∧Q,	P→Q,	P↔Q	
where	P	and	Q	are	sentences	



What	do	atomic	sentences	mean?	

• Unary	predicates	typically	encode	a	type	or	
is_a	rela=onship	
– Dolphin(flipper):	flipper	is	a	kind	of	dolphin	
– Green(kermit):	kermit	is	a	kind	of	green	thing	
– Integer(x):	x	is	a	kind	of	integer	

• Non-unary	predicates	typically	encode	
rela=ons	
– Loves(john,	mary)	
– Greater_than(2,	1)	
– Between(newYork,	philadelphia,	bal=more)	



Sentences:	built	from	terms	and	atoms	

• quan9fied	sentences	adds	quan=fiers	∀	and	∃	
– ∀x	loves(x,	mother(x))	
– ∃x	number(x)	∧	greater(x,	100),	prime(x)	

• A	well-formed	formula	(wff)	is	a	sentence	
containing	no	“free” variables,	i.e.,	all	
variables	are	“bound”	by	either	a	universal	or	
existen=al	quan=fiers		
(∀x)P(x,y)	has	x	bound	as	a	universally	
quan=fied	variable,	but	y	is	free		



A	BNF	for	FOL	
S := <Sentence> ;
<Sentence> := <AtomicSentence> | 
          <Sentence> <Connective> <Sentence> |
          <Quantifier> <Variable>,... <Sentence> |
          "NOT" <Sentence> |
          "(" <Sentence> ")"; 
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
                    <Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")" |
          <Constant> |
          <Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ; 
<Function> := "Mother" | "LeftLegOf" | ... ;



Quan9fiers	
• Universal	quan9fica9on		
– (∀x)P(x)	means	P	holds	for	all	values	of	x	in	
domain	associated	with	variable	

– E.g.,	(∀x)	dolphin(x)	→	mammal(x)		
• Existen9al	quan9fica9on		
– (∃x)P(x)	means	P	holds	for	some	value	of	x	
in	domain	associated	with	variable	

– E.g.,	(∃x)	mammal(x)	∧	lays_eggs(x)	
– This	lets	us	make	a	statement	about	some	
object	without	naming	it	



Quan9fiers	(1)	

• Universal	quan=fiers	oJen	used	with	implies	to	
form	rules:	
(∀x)	student(x)	→	smart(x)	means	“All	students	are	
smart”	

• Universal	quan=fica=on	rarely	used	to	make	
blanket	statements	about	every	individual	in	
the	world:		
(∀x)	student(x)	∧	smart(x)	means	“Everyone	in	the	
world	is	a	student	and	is	smart”	



Quan9fiers	(2)	

• Existen=al	quan=fiers	usually	used	with	and	to	
specify	a	list	of	proper=es	about	an	individual:	
(∃x)	student(x)	∧	smart(x)	means	“There	is	a	student	
who	is	smart”	

• Common	mistake:	represent	this	in	FOL	as:	
(∃x)	student(x)	→	smart(x)		

• What	does	this	sentence	mean?	
– ??	



Quan9fiers	(2)	

• Existen=al	quan=fiers	usually	used	with	and	to	
specify	a	list	of	proper=es	about	an	individual:	
(∃x)	student(x)	∧	smart(x)	means	“There	is	a	student	
who	is	smart”	

• Common	mistake:	represent	this	in	FOL	as:	
(∃x)	student(x)	→	smart(x)		

• What	does	this	sentence	mean?	
– P	->	Q	=	~P	v	Q	
– Ex	student(x)	->	smart(x)	=	Ex	~student(x)	v	smart(x)	
– There’s	something	that	is	not	a	student	or	is	smart	
	



Quan9fier	Scope	
• FOL	sentences	have	structure,	like	programs	
• In	par=cular,	variables	in	a	sentence	have	a	scope	
• For	example,	suppose	we	want	to	say		
– “everyone	who	is	alive	loves	someone”	
– (∀x)	alive(x)	→	(∃y)	loves(x,y)		

• Here’s	how	we	scope	the	variables	

(∀x)	alive(x)	→	(∃y)	loves(x,y)	

Scope	of	x	
Scope	of	y	



Quan9fier	Scope	
• Switching	order	of	universal	quan9fiers	does	not	
change	the	meaning	
–  (∀x)(∀y)P(x,y)	↔	(∀y)(∀x)	P(x,y)	
– “Dogs	hate	cats”	(i.e.,	“all	dogs	hate	all	cats”)	

• You	can	switch	order	of	existen9al	quan9fiers	
–  (∃x)(∃y)P(x,y)	↔	(∃y)(∃x)	P(x,y)		
– “A	cat	killed	a	dog”	

• Switching	order	of	universal	and	existen9al	
quan9fiers	does	change	meaning:		
– Everyone	likes	someone:	(∀x)(∃y)	likes(x,y)		
– Someone	is	liked	by	everyone:	(∃y)(∀x)	likes(x,y)	



Procedural	example	1		
def	verify1():	
				#	Everyone	likes	someone:	(∀x)(∃y)	likes(x,y)		
				for	x	in	people():	
								found	=	False	
								for	y	in	people():	
												if	likes(x,y):	
																	found	=	True	
																	break	
									if	not	Found:	
													return	False	
				return	True	
									
			

Every	person	has	at	
least	one	individual	that	
they	like.	



Procedural	example	2		
def	verify2():	
				#	Someone	is	liked	by	everyone:	(∃y)(∀x)	likes(x,y)		
				for	y	in	people():	
								found	=	True	
								for	x	in	people():	
												if	not	likes(x,y):	
																	found	=	False	
																	break	
									if	found	
													return	True	
				return	False	
									
			

There	is	a	person	who	is	
liked	by	every	person	in	
the	universe.	



Connec9ons	between	∀	and	∃	

• We	can	relate	sentences	involving	∀	and	∃	using	
extensions	to		De	Morgan’s	laws:	
1. (∀x)	¬P(x)	↔	¬(∃x)	P(x)	
2. ¬(∀x)	P(x)	↔	(∃x)	¬P(x)	
3. (∀x)	P(x)	↔	¬	(∃x)	¬P(x)	
4. (∃x)	P(x)	↔	¬(∀x)	¬P(x)	

• Examples	
1. 	All	dogs	don’t	like	cats	↔	No	dogs	like	cats	
2. 	Not	all	dogs	dance	↔	There	is	a	dog	that	doesn’t	dance	
3. 	All	dogs	sleep	↔	There	is	no	dog	that	doesn’t	sleep	
4. 	There	is	a	dog	that	talks	↔	Not	all	dogs	can’t	talk	



Quan9fied	inference	rules	

• Universal	instan=a=on	
– ∀x	P(x)	∴	P(A)				#	where	A	is	some	constant	

• Universal	generaliza=on	
– P(A)	∧	P(B)	…	∴	∀x	P(x)	#	if	AB…	enumerate	all		
																																												#			individuals		

• Existen=al	instan=a=on	
– ∃x	P(x)	∴P(F)	

• Existen=al	generaliza=on	
– P(A)	∴	∃x	P(x)	

← Skolem*	constant	F	
					F	must	be	a	“new”	constant	not				
				appearing	in	the	KB	

*	AJer	Thoralf	Skolem	



Universal	instan9a9on	
(a.k.a.	universal	elimina9on)	

• If	(∀x)	P(x)	is	true,	then	P(C)	is	true,	where	C	
is	any	constant	in	the	domain	of	x,	e.g.:		
(∀x)	eats(John,	x)	⇒	
										eats(John,	Cheese18)	

• Note	that	func=on	applied	to	ground	terms	
is	also	a	constant	
(∀x)	eats(John,	x)	⇒	
										eats(John,	contents(Box42))	



Existen9al	instan9a9on	
(a.k.a.	existen9al	elimina9on)	

• From	(∃x)	P(x)	infer	P(c),	e.g.:	
– 	(∃x)	eats(Mikey,	x)	→	eats(Mikey,	Stuff345)	

• The	variable	is	replaced	by	a	brand-new	constant	
not	occurring	in	this	or	any	sentence	in	the	KB	

• Also	known	as	skolemiza=on;	constant	is	a	skolem	
constant	

• We	don’t	want	to	accidentally	draw	other	
inferences	about	it	by	introducing	the	constant		

• Can	use	this	to	reason	about	unknown	objects,	
rather	than	constantly	manipula=ng	existen=al	
quan=fiers	



Existen9al	generaliza9on	
(a.k.a.	existen9al	introduc9on)	

• If	P(c)	is	true,	then	(∃x)	P(x)	is	inferred,	e.g.:	
Eats(Mickey,	Cheese18)	⇒	
								(∃x)	eats(Mickey,	x)	

• All	instances	of	the	given	constant	symbol	
are	replaced	by	the	new	variable	symbol	

• Note	that	the	variable	symbol	cannot	
already	exist	anywhere	in	the	expression	



Transla9ng	English	to	FOL	

Every	gardener	likes	the	sun	
∀x	gardener(x)	→	likes(x,Sun)		

You	can	fool	some	of	the	people	all	of	the	9me	
∃x	∀t		person(x)	∧	=me(t)	→	can-fool(x,	t)	

You	can	fool	all	of	the	people	some	of	the	9me	
	∃t	=me(t)	∧	∀x	person(x)	→	can-fool(x,	t)	
∀x	person(x)	→	∃t	=me(t)	∧can-fool(x,	t)	

All	purple	mushrooms	are	poisonous	
∀x	(mushroom(x)	∧	purple(x))	→	poisonous(x)		

Note	2	
possible	
readings	of		NL	
sentence	



Transla9ng	English	to	FOL	
No	purple	mushroom	is	poisonous	(two	ways)	
¬∃x	purple(x)	∧	mushroom(x)	∧	poisonous(x)		
∀x		(mushroom(x)	∧	purple(x))	→	¬poisonous(x)		
	

There	are	(at	least)	two	purple	mushrooms	
∃x	∃y	mushroom(x)	∧	purple(x)	∧	mushroom(y)	∧	
purple(y)	∧	¬(x=y)	
There	are	exactly	two	purple	mushrooms	
∃x	∃y	mushroom(x)	∧	purple(x)	∧	mushroom(y)	∧	
purple(y)	∧	¬(x=y)	∧	
∀z	(mushroom(z)	∧	purple(z))	→	((x=z)	∨	(y=z))		
	

Obama	is	not	short	
¬short(Obama)		
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Logic	and	People	

• People	can	easily	be	confused	by	logic	
• And	are	oJen	suspicious	of	it,	or	give	it	too	much	weight	
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Monty	Python	example	(Russell	&	Norvig)	

FIRST	VILLAGER:	We	have	found	a	witch.	May	we	burn	her?	
ALL:	A	witch!	Burn	her!	
BEDEVERE:	Why	do	you	think	she	is	a	witch?	
SECOND	VILLAGER:	She	turned	me	into	a	newt.	
B:	A	newt?	
V2	(aDer	looking	at	himself	for	some	Fme):	I	got	beuer.	
ALL:	Burn	her	anyway.	
B:	Quiet!	Quiet!	There	are	ways	of	telling	whether	she	is	a	witch.	
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Monty	Python	cont.	

B:	Tell	me…	what	do	you	do	with	witches?	
ALL:	Burn	them!	
B:	And	what	do	you	burn,	apart	from	witches?	
V4:	…wood?	
B:	So	why	do	witches	burn?	
V2	(pianissimo):	because	they’re	made	of	wood?	
B:	Good.	
ALL:	I	see.	Yes,	of	course.	
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B:	So	how	can	we	tell	if	she	is	
made	of	wood?	

V1:	Make	a	bridge	out	of	her.	
B:	Ah…	but	can	you	not	also	make	
bridges	out	of	stone?	

ALL:	Yes,	of	course…	um…	er…	
B:	Does	wood	sink	in	water?	
ALL:	No,	no,	it	floats.	Throw	her	
in	the	pond.	

B:	Wait.	Wait…	tell	me,	what	also	
floats	on	water?	

ALL:	Bread?	No,	no	no.	Apples…	
gravy…	very	small	rocks…	

B:	No,	no,	no,	
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KING	ARTHUR:	A	duck!	
(They	all	turn	and	look	at	Arthur.	Bedevere	looks	up,	very	impressed.)	
B:	Exactly.	So…	logically…	
V1	(beginning	to	pick	up	the	thread):	If	she…	weighs	the	same	as	a	
duck…	she’s	made	of	wood.	

B:	And	therefore?	
ALL:	A	witch!	
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Fallacy:	Affirming	the	conclusion	
∀x	witch(x)	→	burns(x)	
∀x	wood(x)	→	burns(x)	
-------------------------------	
∴	∀z	witch(x)	→	wood(x)	
	
p	→	q	
r	→	q	
---------	
p	→	r	
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Monty	Python	Near-Fallacy	#2	

wood(x)	→	can-build-bridge(x)	
-----------------------------------------	
∴	can-build-bridge(x)	→	wood(x)	

• B:	Ah…	but	can	you	not	also	make	bridges	out	of	
stone?	
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Monty	Python	Fallacy	#3	

∀x	wood(x)	→	floats(x)	
∀x	duck-weight	(x)	→	floats(x)	
-------------------------------	
∴	∀x	duck-weight(x)	→	wood(x)	
	
p	→	q	
r	→	q	
-----------	
∴	r	→	p	
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Monty	Python	Fallacy	#4	
∀z	light(z)	→	wood(z)	
light(W)	
------------------------------	
∴	wood(W)																							%	ok…………..	
	
witch(W)	→	wood(W)						%	applying	universal	instan.	
																																								%	to	fallacious	conclusion	#1	

wood(W)	
---------------------------------	
∴	witch(z)	



Simple	genealogy	KB	in	FOL	
Design	a	knowledge	base	using	FOL	that	
–  Has	facts	of	immediate	family	rela=ons,	e.g.,	
spouses,	parents,	etc.	

–  Defines	of	more	complex	rela=ons	
(ancestors,	rela=ves)	

–  Detect	conflicts,	e.g.,	you	are	your	own	
parent	

–  Infers	rela=ons,	e.g.,	grandparent	from	
parent	

–  Answers	queries	about	rela=onships	
between	people	



How	do	we	approach	this?	
• Design	an	ini=al	ontology	of	types,	e.g.	
– e.g.,	person,	man,	woman,	gender	

• Add	general	individuals	to	ontology,	e.g.	
– gender(male),	gender(female)	

• Extend	ontology	by	defining	rela=ons,	e.g.	
– 	spouse,	has_child,	has_parent	

• Add	general	constraints	to	rela=ons,	e.g.	
– spouse(X,Y)	=>	~	X	=	Y	
– spouse(X,Y)	=>	person(X),	person(Y)	

• Add	FOL	sentences	for	inference,	e.g.	
– spouse(X,Y)	ó	spouse(Y,X)	
– man(X)	ó	person(X)	∧has_gender(X,	male)	



Example:	A	simple	genealogy	KB	by	FOL	
• Predicates:	
– parent(x,	y),	child(x,	y),	father(x,	y),	daughter(x,	y),	
etc.	

– spouse(x,	y),	husband(x,	y),	wife(x,y)	
– ancestor(x,	y),	descendant(x,	y)	
– male(x),	female(y)	
– rela=ve(x,	y)	

• Facts:	
– husband(Joe,	Mary),	son(Fred,	Joe)	
– spouse(John,	Nancy),	male(John),	son(Mark,	Nancy)	
– father(Jack,	Nancy),	daughter(Linda,	Jack)	
– daughter(Liz,	Linda)	
– etc.	



Example	Axioms	
(∀x,y)	parent(x,	y)	↔	child	(y,	x)	
(∀x,y)	father(x,	y)	↔	parent(x,	y)	∧	male(x)	;similar	for	mother(x,	y)	
(∀x,y)	daughter(x,	y)	↔	child(x,	y)	∧	female(x)	;similar	for	son(x,	y)	
(∀x,y)	husband(x,	y)	↔	spouse(x,	y)	∧	male(x)	;similar	for	wife(x,	y)	

(∀x,y)	spouse(x,	y)	↔	spouse(y,	x)		;spouse	relaFon	is	symmetric	
(∀x,y)	parent(x,	y)	→	ancestor(x,	y)		
(∀x,y)(∃z)	parent(x,	z)	∧	ancestor(z,	y)	→	ancestor(x,	y)		
(∀x,y)	descendant(x,	y)	↔	ancestor(y,	x)		

(∀x,y)(∃z)	ancestor(z,	x)	∧	ancestor(z,	y)	→	rela=ve(x,	y)	
(∀x,y)	spouse(x,	y)	→	rela=ve(x,	y)		;related	by	marriage	
(∀x,y)(∃z)	rela=ve(z,	x)	∧	rela=ve(z,	y)	→	rela=ve(x,	y)		;transiFve	

(∀x,y)	rela=ve(x,	y)	↔	rela=ve(y,	x)			;symmetric	
	



Axioms	for	Set	Theory	in	FOL	
1.	The	only	sets	are	the	empty	set	and	those	made	by	adjoining	something	to	a	set:		

∀s	set(s)	<=>	(s=EmptySet)	v	(∃x,r	Set(r)	^	s=Adjoin(s,r))	

2.	The	empty	set	has	no	elements	adjoined	to	it:		
~	∃x,s	Adjoin(x,s)=EmptySet	

3.	Adjoining	an	element	already	in	the	set	has	no	effect:		
∀x,s	Member(x,s)	<=>	s=Adjoin(x,s)	

4.	The	only	members	of	a	set	are	the	elements	that	were	adjoined	into	it:		
∀x,s	Member(x,s)	<=>		∃y,r	(s=Adjoin(y,r)	^	(x=y	∨	Member(x,r)))	

5.	A	set	is	a	subset	of	another	iff	all	of	the	1st	set’s	members	are	members	of	the	2nd:	
∀s,r	Subset(s,r)	<=>	(∀x	Member(x,s)	=>	Member(x,r))	

6.	Two	sets	are	equal	iff	each	is	a	subset	of	the	other:		
∀s,r	(s=r)	<=>	(subset(s,r)	^	subset(r,s))	

7.	Intersec=on		
∀x,s1,s2	member(X,intersec=on(S1,S2))	<=>	member(X,s1)	^	member(X,s2)	

8.	Union		
∃x,s1,s2	member(X,union(s1,s2))	<=>	member(X,s1)	∨	member(X,s2)	



Seman9cs	of	FOL	

• Domain	M:	the	set	of	all	objects	in	the	world	(of	interest)	
•  Interpreta9on	I:	includes	

–  Assign	each	constant	to	an	object	in	M	
– Define	each	func=on	of	n	arguments	as	a	mapping	Mn	=>	M	
– Define	each	predicate	of	n	arguments	as	a	mapping	Mn	=>	{T,	F}	
–  Therefore,	every	ground	predicate	with	any	instan=a=on	will	have	a	
truth	value	

–  In	general	there’s	an	infinite	number	of	interpreta=ons	because	|M|	
is	infinite	

• Define	logical	connec9ves:		~,	^,	v,	=>,	<=>	as	in	PL	
• Define	seman9cs	of	(∀x)	and	(∃x)	

–  (∀x)	P(x)	is	true	iff	P(x)	is	true	under	all	interpreta=ons		
–  (∃x)	P(x)	is	true	iff	P(x)	is	true	under	some	interpreta=on		



• Model:	an	interpreta=on	of	a	set	of	sentences	
such	that	every	sentence	is	True	

• A	sentence	is	
– sa9sfiable	if	it	is	true	under	some	interpreta=on	
– valid	if	it	is	true	under	all	possible	interpreta=ons	
– inconsistent	if	there	does	not	exist	any	
interpreta=on	under	which	the	sentence	is	true	

• Logical	consequence:	S	|=	X	if	all	models	of	S	are	
also	models	of	X	



Axioms,	defini9ons	and	theorems	
• Axioms:	facts	and	rules	that	capture	the	(important)	
facts	and	concepts	about	a	domain;	axioms	can	be	used	
to	prove	theorems	

–  Mathema=cians	dislike	unnecessary	(dependent)	axioms,	i.e.	
ones	that	can	be	derived	from	others	

–  Dependent	axioms	can	make	reasoning	faster,	however	
–  Choosing	a	good	set	of	axioms	is	a	design	problem	

• A	defini9on	of	a	predicate	is	of	the	form	“p(X)	↔	…”	
and	can	be	decomposed	into	two	parts	
– Necessary	descrip=on:	“p(x)	→	…”		
– Sufficient	descrip=on	“p(x)	←	…”	
– Some	concepts	have	defini=ons	(e.g.,	triangle)	and	some	don’t	
(e.g.,	person)	



More	on	defini9ons	

Example:	define	father(x,	y)	by	parent(x,	y)	and	
male(x)	
• parent(x,	y)	is	a	necessary	(but	not	sufficient)	
descrip=on	of	father(x,	y)	
					father(x,	y)	→	parent(x,	y)	
• parent(x,	y)	^	male(x)	^	age(x,	35)	is	a	sufficient	(but	not	
necessary)	descrip=on	of	father(x,	y):	
					father(x,	y)	←	parent(x,	y)	^	male(x)	^	age(x,	35)		
• parent(x,	y)	^	male(x)	is	a	necessary	and	sufficient	
descrip=on	of	father(x,	y)		

					parent(x,	y)	^	male(x)	↔	father(x,	y)	

	



More	on	defini9ons	

P(x)	

S(x)	

S(x)	is	a	
necessary	
condi=on	of	P(x)	

#	all	Ps	are	Ss	
(∀x)	P(x)	=>	S(x)	

S(x)	

P(x)	

S(x)	is	a	
sufficient	
condi=on	of	P(x)	

#	all	Ps	are	Ss	
	(∀x)	P(x)	<=	S(x)	

P(x)	

S(x)	

S(x)	is	a	
necessary	and	
sufficient	
condi=on	of	P(x)	

#	all	Ps	are	Ss	
#	all	Ss	are	Ps	
(∀x)	P(x)	<=>	S(x)	



Higher-order	logic	
• FOL	only	lets	us	quan=fy	over	variables,	and	
variables	can	only	range	over	objects		

• HOL	allows	us	to	quan=fy	over	rela=ons,	e.g.	
“two	func=ons	are	equal	iff	they	produce	the	same	
value	for	all	arguments”	

∀f	∀g	(f	=	g)	↔	(∀x	f(x)	=	g(x))	

• E.g.:	(quan=fy	over	predicates)	
∀r	transi=ve(	r	)	→	(∀xyz)	r(x,y)	∧	r(y,z)	→	r(x,z))		

• More	expressive,	but	undecidable,	in	general	
	



Expressing	uniqueness	
• OJen	want	to	say	that	there	is	a	single,	unique	
object	that	sa=sfies	a	condi=on	

• There	exists	a	unique	x	such	that	king(x)	is	true		
– ∃x	king(x)	∧	∀y	(king(y)	→	x=y)	
– ∃x	king(x)	∧	¬∃y	(king(y)	∧	x≠y)	
– ∃!	x	king(x)		

• “Every	country	has	exactly	one	ruler”	
– ∀c	country(c)	→	∃!	r	ruler(c,r)		

• Iota	operator:	ι	x	P(x)	means	“the	unique	x	such	
that	p(x)	is	true”	
– “The	unique	ruler	of	Freedonia	is	dead”	
– dead(ι	x	ruler(freedonia,x))	

syntac=c	
sugar	



Nota9onal	differences	
• Different	symbols	for	and,	or,	not,	implies,	...	
– ∀		∃		⇒		⇔		∧		∨		¬		•		⊃	
– p	v	(q	^	r)		
– p	+	(q	*	r)	

• Prolog	
cat(X)	:-	furry(X),	meows	(X),	has(X,	claws)	

• Lispy	nota9ons	
(forall	?x	(implies	(and	(furry	?x)		
																																						(meows	?x)		
																																						(has	?x	claws))	
																															(cat	?x)))	



A	example	of	FOL	in	use	
• Seman=cs	of	W3C’s	seman=c	web	stack	
(RDF,	RDFS,	OWL)	is	defined	in	FOL	

• OWL	Full	is	equivalent	to	FOL	
• Other	OWL	profiles	support	a	subset	of	FOL	
and	are	more	efficient	

• However,	the	seman=cs	of	schema.org	is	
only	defined	in	natural	language	text	

• …and	Google’s	knowledge	Graph	probably	
(!)	uses	probabili=es	

47	



FOL	Summary	
• First	order	logic	(FOL)	introduces	predicates,	
func=ons	and	quan=fiers	

• More	expressive,	but	reasoning	more	complex	
– Reasoning	in	proposi=onal	logic	is	NP	hard,	FOL	is	
semi-decidable	

• Common	AI	knowledge	representa=on	language	
– Other	KR	languages	(e.g.,	OWL)	are	oJen	defined	by	
mapping	them	to	FOL	

• FOL	variables	range	over	objects	
– HOL	variables	range	over	func=ons,	predicates	or	
sentences	


