Propositional and First-Order Logic Chapter 7.4–7.8, 8.1–8.3, 8.5

Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Logic roadmap overview

- Propositional logic
 - Problems with propositional logic
- First-order logic
 - Properties, relations, functions, quantifiers, ...
 - Terms, sentences, wffs, axioms, theories, proofs, ...
 - Extensions to first-order logic
- Logical agents
 - Reflex agents
 - Representing change: situation calculus, frame problem
 - Preferences on actions
 - Goal-based agents

Disclaimer

"Logic, like whiskey, loses its beneficial effect when taken in too large quantities."

- Lord Dunsany

Propositional Logic: Review

Big Ideas

- Logic is a great knowledge representation language for many AI problems
- **Propositional logic** is the simple foundation and fine for many AI problems
- First order logic (FOL) is much more expressive as a KR language and more commonly used in AI
- Many variations on classical logics are used: horn logic, higher order logic, three-valued logic, probabilistic logics, etc.

Propositional logic syntax

- Logical constants: true, false
- Propositional symbols: P, Q, ... (aka atomic sentences)
- Parentheses: (...)
- Sentences are build with connectives:
 - ∧ and [conjunction]
 - v or [disjunction]
 - \Rightarrow implies
 - ⇔ is equivalent
 - not

[disjunction] [implication/conditional/if] [biconditional/iff]

- [negation]
- Literal: atomic sentence or their negation: $P, \neg P$

Propositional logic syntax

- Simplest logic language in which a user specifies
 - -Set of propositional symbols (e.g., P, Q)
 - -What each means, (e.g., P: "It's hot", Q: "It's humid"
- A sentence (well formed formula) is defined as:
 - -Any symbol is a sentence
 - -If S is a sentence, then **¬S** is a sentence
 - -If S is a sentence, then (S) is a sentence
 - -If S and T are sentences, then so are (S v T), (S \land T), (S \rightarrow T), and (S \leftrightarrow T)
 - A sentence results from a finite number of applications of the rules

Examples of PL sentences

• (P \land Q) \rightarrow R

"If it is hot and humid, then it is raining"

• Q \rightarrow P

"If it is humid, then it is hot"

•Q

"It is humid."

We're free to choose better symbols, e.g.: Hot = "It is hot" Humid = "It is humid" Raining = "It is raining"

Some terms

- The meaning or **semantics** of a sentence determines its **interpretation**
- Given the truth values of all symbols in a sentence, it can be *evaluated* to determine its truth value (True or False)
- A model for a KB is a *possible world* an assignment of truth values to propositional symbols that makes each sentence in KB true

Model for a KB

- Let the KB be $[P \land Q \rightarrow R, Q \rightarrow P]$
- What are the possible models? Consider all possible assignments of T|F to P, Q and R and check truth tables PQR
 - FFF: OK
 - FFT: OK
 - FTF: NO
 - FTT: NO
 - TFF: OK
 - TFT: OK
 - TTF: NO
 - TTT: OK

P: it's hot Q: it's humid R: it's raining

Model for a KB

- Let the KB be $[P \land Q \rightarrow R, Q \rightarrow P, Q]$
- What are the possible models? Consider all possible assignments of T|F to P, Q and R and check truth tables PQR
 - FFF: NO
 - FFT: NO
 - FTF: NO
 - FTT: NO
 - -TFF: NO
 - TFT: NO
 - -TTF: NO
 - TTT: OK

P: it's hot Q: it's humid R: it's raining

- Since R is true in every model of the KB
- The KB entails that R is True

More terms

- A valid sentence or tautology is a sentence that's True under all interpretations, no matter what the world is actually like or what the semantics is. Example: "It's raining or it's not raining"
- An inconsistent sentence or contradiction is a sentence that's False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- P entails Q, written P |= Q, means that whenever
 P is True, so is Q
 - In all models in which P is true, Q is also true

Truth tables

- Truth tables are used to define logical connectives
- And to determine when a complex sentence is true given the values of the symbols in it

Р	Q	$\neg P$	$P \land Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	Тпие	False	False	True	True
False	Тrue	Тпие	False	Тпие	Тгие	False
True	False	False	False	Тпие	False	False
True	True	False	Тпие	Тпие	True	True

Example of a truth table used for a complex sentence

Р	Н	$P \lor H$	$(P \lor H) \land \neg H$	$((P \lor H) \land \neg H) \implies P$
False	False	False	False	Тгие
False	True	True	False	Тгие
True	False	True	True	Тгие
True	True	True	False	Тгие

On the implies connective: $P \rightarrow Q$

- \rightarrow is a logical connective
- So $P \rightarrow Q$ is a logical sentence and has a truth value, i.e., is either true or false
- If we add this sentence to a KB, it can be used by an inference rule, <u>Modes Ponens</u>, to derive/infer/prove Q if P is also in the KB
- Given a KB where P=True and Q=True, we can also derive/infer/prove that P→Q is
 True

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
 - □ P=Q=true
 - P=Q=false
 - P=true, Q=false
 - □ P=false, Q=true

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
 - ☑ P=Q=true
 - ☑ P=Q=false
 - P=true, Q=false
 - ☑ P=false, Q=true
- \bullet We can get this from the truth table for ightarrow
- Note: in FOL it's much harder to prove that a conditional true
 - -Consider proving prime(x) \rightarrow odd(x)

Inference rules

- Logical inference creates new sentences that logically follow from a set of sentences (KB)
- An inference rule is **sound** if every sentence X it produces when operating on a KB logically follows from the KB

-i.e., inference rule creates no contradictions

- An inference rule is **complete** if it can produce every expression that logically follows from (is entailed by) the KB.
 - -Note analogy to complete search algorithms

Sound rules of inference

- Here are examples of sound rules of inference
- Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	A, A → B	В
And Introductio	n A, B	$A \wedge B$
And Elimination	ΑΛΒ	Α
Double Negatio	n ¬¬A	Α
Unit Resolution	A ∨ B, ¬B	Α
Resolution	A v B, ¬B v	C A v C

Soundness of modus ponens

Α	В	$A \rightarrow B$	OK?
True	True	True	\checkmark
True	False	False	\checkmark
False	True	True	\checkmark
False	False	True	\checkmark

Resolution

- Resolution is a valid inference rule producing a new clause implied by two clauses containing complementary literals
 - Literal: atomic symbol or its negation, i.e., P, ~P
- Amazingly, this is the only interference rule needed to build a sound & complete theorem prover
 - Based on proof by contradiction and usually called resolution refutation
- The resolution rule was discovered by <u>Alan</u> <u>Robinson (CS, U. of Syracuse) in the mid 1960s</u>

Resolution

- A KB is a set of sentences all of which are true, i.e., a conjunction of sentences
- To use resolution, put KB into *conjunctive normal form* (CNF) where each is a disjunction of (one or more) literals (positive or negative atoms)
- Every KB can be put into CNF, it's just a matter of rewriting its sentences using standard tautologies, e.g.:

 $-P \rightarrow Q \equiv \sim P \vee Q$

Resolution Example

Tautologies $(A \rightarrow B) \leftrightarrow (^{\sim}A \lor B)$ $(A \lor (B \land C)) \leftrightarrow (A \lor B) \land (A \lor C)$

- KB: $[P \rightarrow Q, Q \rightarrow R \land S]$
- KB: $[P \rightarrow Q, Q \rightarrow R, Q \rightarrow S]$
- KB in CNF: [~PvQ, ~QvR, ~QvS]
- Resolve KB[0] and KB[1] producing:
 ~P∨R (i.e., P→R)
- Resolve KB[0] and KB[2] producing:
 ~P∨S (i.e., P→S)
- New KB: [~PvQ, ~QvR, ~QvS, ~PvR, ~PvS]

Soundness of resolution inference rule

ά	β	γ	$\alpha \lor \beta$	$\neg\beta \lor \gamma$	$\alpha \vee \gamma$
False	False	False	False	Тгие	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	True	True	True	True	True
True	False	False	True	True	True
True	<u>False</u>	True	True	True	True
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	True	<u>True</u>	True

From the rightmost three columns of this truth table, we can see that

$$(\alpha \lor \beta) \land (\ \ \beta \lor \gamma) \leftrightarrow (\alpha \lor \gamma)$$

is valid (i.e., always true regardless of the truth values
assigned to α , β and γ

Soundness of resolution inference rule

α	β	γ	$\alpha \lor \beta$	$\neg\beta \lor \gamma$	$\alpha \vee \gamma$
False	False	False	False	Тгие	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	True	True	True	True	True
True	False	False	True	True	True
True	<u>False</u>	True	True	True	True
True	True	False	True	False	True
<u>True</u>	True	<u>True</u>	True	<u>True</u>	True

From rightmost three columns of truth table, we see that $(\alpha \lor \beta) \land (\ \ \beta \lor \gamma) \rightarrow (\alpha \lor \gamma)$ is valid (i.e., always true regardless of truth values for α , β

and y

Proving it's raining (1)

- A **proof** is a sequence of sentences, where each is a premise (i.e., a given) or is derived from earlier sentences in the proof by an inference rule
- Last sentence is the **theorem** (also called goal or query) that we want to prove
- The *weather problem* using traditional reasoning

1 Hu	premise	"It's humid"
2 Hu→Ho	premise	"If it's humid, it's hot"
3 Ho	modus ponens(1,2)	"It's hot"
4 (Ho∧Hu)→R	premise	"If it's hot & humid, it's raining"
5 Ho∧Hu	and introduction(1,3)	"It's hot and humid"
6 R	modus ponens(4,5)	"It's raining"

Proving it's raining (2)

A simple proof procedure

This procedure will generate new sentences from a KB

- 1. Convert all sentences in the KB to CNF
- 2. Find all pairs of sentences in KB with complementary literals that have not yet been resolved
- 3. If there are no pairs stop else resolve each pair, adding the result to the KB and go to 2
- Is it sound?
- Is it complete?
- Will it always terminate?

Horn* sentences

- A Horn sentence or <u>Horn clause</u> has the form: P1 \land P2 \land P3 ... \land Pn \rightarrow Qm where n>=0, m in{0,1}
- Note: a conjunction of 0 or more symbols to left of
 → and 0-1 symbols to right
- Special cases:
 - n=0, m=1: P (assert P is true)
 - -n>0, m=0: $P \land Q \rightarrow$ (constraint: both P and Q can't be true)
 - n=0, m=0: (well, there is nothing there!)
- Put in CNF: each sentence is a disjunction of literals with at most one non-negative literal

 $(P \rightarrow Q) = (\neg P \lor Q)$

¬P1 v ¬P2 v ¬P3 ... v ¬Pn v Q

* After Alfred Horn

Significance of Horn logic

- We can also have horn sentences in FOL
- Reasoning with horn clauses is much simpler
 - Satisfiability of propositional KB (i.e., finding values for a symbols that will make it true) is NP complete
 - Restricting KB to horn sentences, satisfiability is in P
- For this reason, FOL Horn sentences are the basis for many rule-based languages, including <u>Prolog</u> and <u>Datalog</u>
- Horn logic can't handle, in a general way, negation and disjunctions

Entailment and derivation

• Entailment: KB |= Q

- Q is entailed by KB (set sentences) iff there is no logically possible world where Q is false while all the sentences in KB are true
- Or, stated positively, Q is entailed by KB iff the conclusion is true in every logically possible world in which all the premises in KB are true

• Derivation: KB |- Q

 We can derive Q from KB if there's a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q

Two important properties for inference

Soundness: If KB |- Q then KB |= Q

- If Q is derived from KB using a given set of rules of inference, then Q is entailed by KB
- Hence, inference produces only real entailments, or any sentence that follows deductively from the premises is valid

Completeness: If KB |= Q then KB |- Q

- If Q is entailed by KB, then Q can be derived from KB using the rules of inference
- Hence, inference produces all entailments, or all valid sentences can be proved from the premises

Problems with Propositional Logic

Propositional logic: pro and con

- Advantages
 - -Simple KR language good for many problems
 - -Lays foundation for higher logics (e.g., FOL)
 - Reasoning is decidable, though NP complete;
 efficient techniques exist for many problems

Disadvantages

- -Not expressive enough for most problems
- -Even when it is, it can very "un-concise"

PL is a weak KR language

- Hard to identify *individuals* (e.g., Mary, 3)
- Can't directly represent properties of individuals or relations between them (e.g., "Bill is tall")
- Generalizations, patterns, regularities hard to represent (e.g., "all triangles have 3 sides")
- First-Order Logic (FOL) can represent this information via relations, variables and quantifiers, e.g.,
 - Every elephant is gray: $\forall x (elephant(x) \rightarrow gray(x))$
 - There is a white alligator: $\exists x (alligator(X) \land white(X))$

PL Example

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Confucius is a person.
 - Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

PL Example

• In PL we have to create propositional symbols to stand for all or part of each sentence, e.g.:

P = "person"; Q = "mortal"; R = "Confucius"

• The above 3 sentences are represented as:

 $P \rightarrow Q; R \rightarrow P; R \rightarrow Q$

- The 3rd sentence is entailed by the first two, but we need an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes *person* and *mortal*
- Representing other individuals requires introducing separate symbols for each, with some way to represent the fact that all individuals who are "people" are also "mortal"

Hunt the Wumpus domain

• Some atomic propositions: S12 = There is a stench in cell (1,2) B34 = There is a breeze in cell (3,4) W22 = Wumpus is in cell (2,2) V11 = We've visited cell (1,1) OK11 = Cell (1,1) is safe

1,4	2,4	3,4	4,4	
^{1,3} w:	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus
1,2 A S OK	2,2 OK	3,2	4,2	
1,1 V OK	^{2,1} B V OK	3,1 P!	4,1	

• Some rules:

...

 $\neg S22 \rightarrow \neg W12 \land \neg W23 \land \neg W32 \land \neg W21$ $S22 \rightarrow W12 \lor W23 \lor W32 \lor W21$ $B22 \rightarrow P12 \lor P23 \lor P32 \lor P21$ $W22 \rightarrow S12 \land S23 \land S23 \land W21$ $W22 \rightarrow \neg W11 \land \neg W21 \land \dots \neg W44$ $A22 \rightarrow V22$ $A22 \rightarrow \neg W11 \land \neg W21 \land \dots \neg W44$ $V22 \rightarrow OK22$

Hunt the Wumpus domain

- Eight variables for each cell: e.g., A11, B11, G11, OK11, P11, S11, V11, W11
- The lack of variables requires us to give similar rules for each cell!

Ten rules (I think) for each

A11 →	W11 →
V11 →	¬W11 →
P11 →	S11 →
	¬S11 →
¬P11 →	B11 →
	¬B11 →

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square
^{1,3} w:	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus
1,2 S OK	2,2 OK	3,2	4,2	
1,1 V OK	^{2,1} B V OK	3,1 P!	4,1	

After third move

• We can prove that the Wumpus is in (1,3) using these four rules

See R&N section 7.5

 $(R1) \neg S11 \rightarrow \neg W11 \land \neg W12 \land \neg W21$

 $(R2) \neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$

 $(R3) \neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13$

(R4) $S12 \rightarrow W13 \vee W12 \vee W22 \vee W11$

Proving W13

 $(R1) \neg S11 \rightarrow \neg W11 \land \neg W12 \land \neg W21$ $(R2) \neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$ $(R3) \neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13$ $(R4) S12 \rightarrow W13 \lor W12 \lor W22 \lor W11$

Apply MP with \neg S11 and R1:

¬ W11 ^ ¬ W12 ^ ¬ W21

Apply And-Elimination to this, yielding 3 sentences:

¬ W11, ¬ W12, ¬ W21

Apply MP to ~S21 and R2, then apply And-elimination:

¬ W22, ¬ W21, ¬ W31

Apply MP to S12 and R4 to obtain:

W13 v W12 v W22 v W11

Apply Unit Resolution on (W13 \vee W12 \vee W22 \vee W11) and \neg W11:

W13 v W12 v W22

Apply Unit Resolution with (W13 \vee W12 \vee W22) and \neg W22:

W13 v W12

Apply Unit Resolution with (W13 \vee W12) and \neg W12:

W13

QED

Propositional Wumpus hunter problems

- Lack of variables prevents stating more general rules
 - $\forall x, y V(x,y) \rightarrow OK(x,y)$
 - $\forall x, y S(x,y) \rightarrow W(x-1,y) \vee W(x+1,y) \dots$
- Change of the KB over time is difficult to represent
 - -In classical logic, a fact is true or false for all time
 - A standard technique is to index dynamic facts with the time when they're true
 - A(1, 1, t0)
 - -Thus we have a separate KB for every time point

Propositional logic summary

- Inference: process of deriving new sentences from old
 - Sound inference derives true conclusions given true premises
 - Complete inference derives all true conclusions from a set of premises
- Valid sentence: true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then, given its premise, its consequent can be derived
- Different logics make different **commitments** about what the world is made of and the kind of beliefs we can have
- **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented
 - Simple syntax and semantics suffices to illustrate the process of inference
 - Propositional logic can become impractical, even for very small worlds