
Nim,
nim.py and

games.py

Homework 4
Problem 4

The History of Nim Games
• Believed to have been created in China;

unknown date of origin
• First actual recorded date- 15th century

Europe
• Originally known as Tsyanshidzi meaning
“picking stones game”

• Presently comes from German word “nimm”
meaning “take”

Adapted from a presentation by
Tim Larson and Danny Livarchik

Rules of Nim
•  Impartial game of mathematical strategy
• Strictly two players
• Alternate turns removing any number of items

from any ONE heap until no pieces remain
• Must remove at least one item per turn
• Last player to be able to remove a wins
• Variations:

– Initial number of heaps and items in each
– Misere play: last player who can move loses
– Limit on number of items that can be removed

Demonstration

Player 1 wins!

Theoretical Approach
• Theorem developed by Charles Bouton in 1901
• This states that in order to win, the goal is to reach

a nim-sum of 0 after each turn until all turns are
finished

• Nim Sum: evaluated by taking the exclusive-or of
the corresponding numbers when the numbers are
given in binary form

• Exclusive-or is used for adding two or more
numbers in binary and it basically ignores all
carries

Tree for (2,1)

Tree for (2,2)

games.py
• Peter Norvig’s python framework for multiple-

player, turn taking games
•  Implements minimax and alphabeta
• For a new game, subclass the Game class

– Decide how to represent the “board”
– Decide how to represent a move
– A state is (minimally) a board and whose turn to move
– Write methods to (1) initialize game instance, (2)

generate legal moves from a state, (3) make a move in
state, (4) recognize terminal states (win, lose or draw),
(5) compute utility of a state for a player, (5) display a
state

Assumptions about states
• games.py assumes that your representation

of a state is a object with at least two
attributes: to_move and board

• The Struct class defined in utils.py can be
used to create such instances
– s = Struct(foo=‘a’, to_move = 1, board = [[1][2][3]])
– Access the attributes as s.to-move, etc.

Caution

• Python lists are mutable objects
•  If you use a list to represent a board and whant to

generate a new board from it, you probably want to
copy it fist
new_board = board[:]
new_board[3] = new_board[3] - 1

Players
The games.py framework defines several
players
•  random_player: choses a random move from

among legal moves
•  alphabeta_player: uses alpha_beta to choose

best move, optional args specify cutoff depth
(default is 8) and some other variations

•  human_player: asks user to enter move

Variations
def make_alphabeta_player(N):
 """ returns a player function that uses alpha_beta search to depth N """
 return lambda game, state: alphabeta_search(state, game, d=N)

add to the PLAYER dictionary player function named ab1,ab2,...ab20
that use alpha_beta search with depth cutoffs between 1 and 20

for i in range(20):
 PLAYER['ab'+str(i)] = make_alphabeta_player(i)

