Adversarial Searh
Aka Games

Chapter 5

Some material adopted from notes by Charles R. Dyer, U of Wisconsin-Madison



Overview

* Game playing
— State of the art and resources

— Framework

* Game trees
— Minimax
— Alpha-beta pruning
— Adding randomness



Why study games?

* Interesting, hard problems that require minimal
“initial structure”

e Clear criteria for success

* A way to study problems involving {hostile,
adversarial, competing} agents and the uncertainty
of interacting with the natural world

* People have used them to assess their intelligence
* Fun, good, easy to understand, PR potential
* Games often define very large search spaces

—chess 3519 nodes in search tree, 10%° legal states



State of the art

* Chess:

— Deep Blue beat Gary Kasparov in 1997
— Garry Kasparav vs. Deep Junior (Feb 2003): tie!
— Kasparov vs. X3D Fritz (November 2003): tie!

e Checkers: Chinook 1s the world champion
* Checkers: has been solved exactly —1t’s a draw!
* Go: Computers starting to achieve expert level

* Bridge: Expert computer players exist, but no
world champions yet

* Poker: Poki regularly beats human experts
* Check out the U. Alberta Games Group




The board set for play

Chinook

* Chinook 1s the World Man-Machine Checkers
Champion, developed by researchers at the

University of Alberta

* It earned this title by competing in human
tournaments, winning the right to play for the
(human) world championship, and eventually
defeating the best players in the world

 Play Chinook online

* One Jump Ahead: Challenging Human
Supremacy in Checkers, Jonathan Schaeffer,
1998

» See Checkers Is Solved, J. Schaeffer, et al.,
Science, v317, n5844, pp1518-22, AAAS,
2007.




Chess early days

e 1948: Norbert Wiener’s Cybernetics describes how a
chess program could be developed using a depth-
limited minimax search with an evaluation function

e 1950: Claude Shannon publishes Programming a
Computer for Playing Chess

* 1951: Alan Turing develops on paper the first
program capable of playing a full game of chess

* 1962: Kotok and McCarthy (MIT) develop first
program to play credibly

* 1967: Mac Hack Six, by Richard Greenblatt et al.
(MIT) defeats a person in regular tournament play
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Chess Grand Master Garry Kasparov, left, comtemplates his next move against IBM's Deep Blue chess computer while
Chung-Jen Tan, manager of the Deep Blue project looks on iduring the first game of a six-game rematch between
Kasparov and Deep Blue in this file photo from 1997. The computer program made history by becoming the first to
beat a world chess champion, Kasparov, at a serious game. Photo: Adam Nadel/Associated Press




Othello: Murakami vs. Logistello

open sourced

Takeshi Murakami
World Othello Champion

e 1997: The Logistello software crushed Murakami, 6 to O
 Humans can not win against it

* Othello, with 10?8 states, is still not solved 1 9 9 7




: gle DeepMind
= Challenge Match
8 - 15 March 2016
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Tuesday, January 31, 2017

CARNEGIE MELLON ARTIFICIAL INTELLIGENCE BEATS TOP
POKER PROS

Historic win at Rivers Casino is first against best human players 20 1 7

By Byron Spice
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Tuomas Sandholm (center) and Ph.D. student Noam Brown developed Libratus.



How can
we do it?



Typical simple case for a game

e 2-person game
* Players alternate moves
e Zero-sum: one player’s loss 1s the other’s gain

e Perfect information: both players have access to
complete information about state of game. No
information hidden from either player

* No chance (e.g., using dice) involved

« Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,
Othello

* But not: Bridge, Solitaire, Backgammon, Poker,
Rock-Paper-Scissors, ...



Can we use ...

e Uninformed search?
e Heuristic search?
e . ocal search?

e Constraint based search?



How to play a game

* A way to play such a game is to:
—Consider all the legal moves you can make
—Compute new position resulting from each move
—Evaluate each to determine which 1s best
—Make that move

— Wait for your opponent to move and repeat

» Key problems are:
—Representing the “board” (i.e., game state)
—Generating all legal next boards
—Evaluating a position



Evaluation function

 Evaluation function or static evaluator used to
evaluate the “goodness” of a game position

— Contrast with heuristic search where evaluation function 1s
non-negative estimate of cost from start node to goal passing
through given node

e Zero-sum assumption permits single function to
describe goodness of board for both players

—f(n) >> 0: position n good for me; bad for you
—f(n) << 0: position n bad for me; good for you
—f(n) near 0: position n 1s a neutral position

— f(n) = +infinity: win for me

— f(n) = -infinity: win for you



Evaluation function examples

* For Tic-Tac-Toe
f(n) = [# my open 3lengths] - [# your open 3lengths]
Where 3length 1s complete row, column, or diagonal
and an open one 1s one that has no opponent marks

* Alan Turing’s function for chess
—f(n) = w(n)/b(n) where w(n) = sum of the point
value of white’s pieces and b(n) = sum of black’s

—Traditional piece values are: pawn:1; knight:3;
bishop:3; rook: 5; queen: 9



Evaluation function examples

* Most evaluation functions specified as a
weighted sum of positive features
f(n) = w, *feat,(n) + w,*feat,(n) + ... + w_*feat, (n)
« Example features for chess are piece count,

piece values, piece placement, squares
controlled, etc.

* IBM’s chess program Deep Blue (circa 1996)

had >&8K features 1n its evaluation function



But, that’s not how people play

* People use look ahead

1.6., enumerate actions, consider opponent’s
possible responses, REPEAT

* Producing a complete game tree 1s only
possible for simple games

* S0, generate a partial game tree for some
number of plys

—Move = each player takes a turn
—Ply = one player’s turn

* What do we do with the game tree?



MAX (X)

X X X B
MIN (O) X % X
r\ X x X
X0 Xl |10 Xh
MAX (X) 0 . :
* We can easily imagine
generating a complete
X0 X X0 X0 5
MIN (O) X X game tree for Tic-Tac-Toe
* Taking board symmetries
_ - into account, there are
| ‘ ‘ 138 terminal positions
X0 X X0 X [X]|O[X m i 1
AL o) (XOX X0 * 91 wins for X, 44 for O
) o xixiol (X100 and 3 draws
Wkility 1 0 +1



Game trees - LR

e Problem spaces for typical games are trees

* Root node 1s current board configuration; player
must decide best single move to make next

* Static evaluator function rates board position
f(board):real, >0 for me; <0 for opponent

 Arcs represent possible legal moves for a player

 [f my turn to move, then root is labeled a "MAX"
node; otherwise 1t’s a "MIN" node

* Each tree level’s nodes are all MAX or all MIN;

nodes at level 1 are of opposite kind from those at
level 1+1



Game Tree for Tic-Tac-Toe

MAX nodes

MIN’s play —

SR MIN nodes

I
/
1
1

Here, symmetries are used to

Terminal state ‘ reduce branching factor
(win for MAX) — @




Minimax procedure

e Create MAX node with current board
configuration

* Expand nodes to some depth (a.k.a. plys) of
lookahead in game

* Apply evaluation function at each leaf node

* Back up values for each non-leaf node until value
1s computed for the root node

— At MIN nodes: value 1s minimum of children’s values
— At MAX nodes: value 1s maximum of children’s values

* Choose move to child node whose backed-up
value determined value at root



Minimax theorem

e Intuition: assume your opponent is at least as smart as
you and play accordingly

—If she’s not, you can only do better!

* Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320

For every 2-person, 0-sum game with finite strategies, there 1s
a value V and a mixed strategy for each player, such that (a)
given player 2's strategy, best payoff possible for player 1 1s
V, and (b) given player 1's strategy, best payoff possible for
player 2 1s -V,

* You can think of this as:
—Minimizing your maximum possible loss

—Maximizing your minimum possible gain



Minimax Algorithm

OO TS
2 2 1
2 71A8 2 71A8 2 71A8

This is the move
selected by minimax

Static evaluator value

@ Max




Partial Game Tree for Tic-Tac-Toe

MAX (X)
X ] X X
MIN (O) X X X
F\ . . .
X|0 x| |o| [x
MAX (X) 0
f(n)=+*1 1f position a win
MIN (O) o };0 x?: forX
f(n)=-1 1f position a win
I ’ for O
X0 X X|01X] [X|O]X === . o
TV ot XXl Xolo f(n)=0 if position a draw
Ukility 1 0 +1



Why use backed-up values?

= Intuition: if evaluation function is good, doing
look ahead and backing up values with Minimax
should be better

" Non-leaf node N’s backed-up value 1s value of best
state that MAX can reach at depth h i1f MIN plays
well

= “well” : same criterion as MAX applies to itself

" [f e 1s good, then backed-up value 1s better estimate
of STATE(N) goodness than ¢(STATE(N))

= Use lookup horizon h because time to choose move
1s limited



Minimax Tree

Pl & X

Pl 1

3
\ value computed
f value by minimax



Is that all there is to
simple games?



Alpha-beta pruning

* Improve performance of the minimax
algorithm through alpha-beta pruning

o “If you have an idea that is surely bad, don't
take the time to see how truly awful it is~ --
Pat Winston

MAX
* We don’t need to compute

the value at this node

MIN Coe .
* No matter what 1t 1s, 1t can’t

affect value of the root node
MAX




Alpha-beta pruning

 Traverse search tree 1n depth-first order
At MAX node n, alpha(n) = max value found so far
« At MIN node n, beta(n) = min value found so far

— Alpha values start at -oo and only increase, while beta
values start at +oo and only decrease

e Beta cutoff: Given MAX node N, cut off search below
N (1.e., don’t examine any more of 1ts children) if

alpha(IN) >= beta(1) for some MIN node ancestor 1 of N

* Alpha cutoff: stop searching below MIN node N 1f
beta(N)<=alpha(1) for some MAX node ancestor 1 of N



Alpha-Beta Tic-Tac-Toe Example

P




Alpha-Beta Tic-Tac-Toe Example
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/l' he beta value of a MIN

node is an upper bound on
the final backed-up value.
It can never increase




Alpha-Beta Tic-Tac-Toe Example

p=1

T

/l' he beta value of a MIN

node is an upper bound on
the final backed-up value.
It can never increase




Alpha-Beta Tic-Tac-Toe Example

p=1

T

a=1

/I‘he alpha value of a MAX

hode is a lower bound on
the final backed-up value.
It can never decrease




Alpha-Beta Tic-Tac-Toe Example




Alpha-Beta Tic-Tac-Toe Example

B=1 p=-1

Search can be discontinued below /
any MIN node whose beta value is Y
less than or equal to the alpha value
of one of its MAX ancestors

2 1 -1



Another alpha-beta example

MAX A 3

AAA K




Alpha-Beta Tic-Tac-Toe Example 2
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function MAX-VALUE (state, o, B)
;; o = best MAX so far; B = best MIN

if TERMINAL-TEST (state) then return
UTILITY (state)

vV o= —o

for each s in SUCCESSORS (state) do
v := MAX (v, MIN-VALUE (s, o, B))
1if v >= 3 then return v

ST Alpha-beta
return v algorithm

function MIN-VALUE (state, o, R)

1f TERMINAL-TEST (state) then return
UTILITY (state)

Vo o1=

for each s in SUCCESSORS (state) do
v := MIN (v, MAX-VALUE (s, o, B))
if v <= o then return v
B := MIN (B, V)

end

return v



Effectiveness of alpha-beta
* Alpha-beta guaranteed to compute same value for
root node as minimax, but with < computation

« Worst case: no pruning, examine b¢ leaf nodes,
where nodes have b children & d-ply search 1s done

* Best case: examine only (2b)%? leaf nodes

— You can search twice as deep as minimax!
—OQOccurs if each player’s best move is 1st alternative

 In Deep Blue’s alpha-beta pruning, average
branching factor at node was ~6 instead of ~35!



Other Improvements

Adaptive horizon + iterative deepening

Extended search: retain k>1 best paths (not just
one) extend tree at greater depth below their leaf
nodes to help dealing with “horizon effect”

Singular extension: If move 1s obviously better
than others in node at horizon h, expand 1t

Use transposition tables to deal with repeated
states

Null-move search: assume player forfeits move; do
a shallow analysis of tree; result must surely be
worse than 1f player had moved. Can be used to
recognize moves that should be explored fully.



