Adversarial Searh
Aka Games

Chapter 5

Some material adopted from notes by Charles R. Dyer, U of Wisconsin-Madison

Overview

* Game playing
— State of the art and resources

— Framework

* Game trees
— Minimax
— Alpha-beta pruning
— Adding randomness

Why study games?

* Interesting, hard problems that require minimal
“initial structure”

e Clear criteria for success

* A way to study problems involving {hostile,
adversarial, competing} agents and the uncertainty
of interacting with the natural world

* People have used them to assess their intelligence
* Fun, good, easy to understand, PR potential
* Games often define very large search spaces

—chess 3519 nodes in search tree, 10%° legal states

State of the art

* Chess:

— Deep Blue beat Gary Kasparov in 1997
— Garry Kasparav vs. Deep Junior (Feb 2003): tie!
— Kasparov vs. X3D Fritz (November 2003): tie!

e Checkers: Chinook 1s the world champion
* Checkers: has been solved exactly —1t’s a draw!
* Go: Computers starting to achieve expert level

* Bridge: Expert computer players exist, but no
world champions yet

* Poker: Poki regularly beats human experts
* Check out the U. Alberta Games Group

The board set for play

Chinook

* Chinook 1s the World Man-Machine Checkers
Champion, developed by researchers at the

University of Alberta

* It earned this title by competing in human
tournaments, winning the right to play for the
(human) world championship, and eventually
defeating the best players in the world

 Play Chinook online

* One Jump Ahead: Challenging Human
Supremacy in Checkers, Jonathan Schaeffer,
1998

» See Checkers Is Solved, J. Schaeffer, et al.,
Science, v317, n5844, pp1518-22, AAAS,
2007.

Chess early days

e 1948: Norbert Wiener’s Cybernetics describes how a
chess program could be developed using a depth-
limited minimax search with an evaluation function

e 1950: Claude Shannon publishes Programming a
Computer for Playing Chess

* 1951: Alan Turing develops on paper the first
program capable of playing a full game of chess

* 1962: Kotok and McCarthy (MIT) develop first
program to play credibly

* 1967: Mac Hack Six, by Richard Greenblatt et al.
(MIT) defeats a person in regular tournament play

(op9z xoidde) z oy daaqg

15082 | aodedsel]

(1552) mnoqy daaq

[00pZ) ToatH

Obiz] aoedsey |

(00zZ) *meg

[CPaz onioy |

[S0cz] swodie g

006T) 9'p 553D

[GeielAoqosty |

[0sbz] qsseds |

(00ST) 0°E $53D

(00PT] ¥ H 98T

[E0cz] ussouiag

197 92) oL og

Ratings of human & computer chess champions

:

:

g

L)

o

1990

1985

1980

1975

1970

1965

1960

‘1‘3'—} Kasparov vs. Deep Blue: The Rematch - Netscape

File Edit Yiew Go Communicator Help

§ Bookmarks Location: |nttp: / fwaew.chess ibm.com/home/html /b htrl

1997

' eep Blue W“%35

v OVERVIEW

) EVENT COVERAGE

With'a® Hfamatlc victory in Game 6, &
Deep Blue won its six-game rematch

) MATCH NEWS

F MAIN STORIES

with Champion Garry Kasparov ©

Commentary
George Phimpion on chess , Kasparow, and the
lnitations of computers
¥ Read the article

Club Kasparov
Wisit the virtual home of the world's greatest
chess player.

RHER AROY,

Community

Dnring the rematch, more than 20 000 people
froem 120 cowrdries jomed the compramity to
i talk shout the match.

Commentary
Vishwanathan Anand on the legacy of
Kasparow vs. Deep Bhae

¥ Read the article

Guest essays
Thoughts on chess, comupaters , and what it all

F Read the essays...

Clips from the remaich
Video footage fromm the games
¥ Hizhlights from the games

r ¥ Press room n » Chess reference n > Feedback n F Site guide J‘l

LN

| 'Document: Done

b

-
S deep-blue-kasparov

A v

Chess Grand Master Garry Kasparov, left, comtemplates his next move against IBM's Deep Blue chess computer while
Chung-Jen Tan, manager of the Deep Blue project looks on iduring the first game of a six-game rematch between
Kasparov and Deep Blue in this file photo from 1997. The computer program made history by becoming the first to
beat a world chess champion, Kasparov, at a serious game. Photo: Adam Nadel/Associated Press

Othello: Murakami vs. Logistello

open sourced

Takeshi Murakami
World Othello Champion

e 1997: The Logistello software crushed Murakami, 6 to O
 Humans can not win against it

* Othello, with 10?8 states, is still not solved 1 9 9 7

: gle DeepMind
= Challenge Match
8 - 15 March 2016

A

Tuesday, January 31, 2017

CARNEGIE MELLON ARTIFICIAL INTELLIGENCE BEATS TOP
POKER PROS

Historic win at Rivers Casino is first against best human players 20 1 7

By Byron Spice

-

7

o
" - y -
& 59/ x

Tuomas Sandholm (center) and Ph.D. student Noam Brown developed Libratus.

How can
we do it?

Typical simple case for a game

e 2-person game
* Players alternate moves
e Zero-sum: one player’s loss 1s the other’s gain

e Perfect information: both players have access to
complete information about state of game. No
information hidden from either player

* No chance (e.g., using dice) involved

« Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,
Othello

* But not: Bridge, Solitaire, Backgammon, Poker,
Rock-Paper-Scissors, ...

Can we use ...

e Uninformed search?
e Heuristic search?
e . ocal search?

e Constraint based search?

How to play a game

* A way to play such a game is to:
—Consider all the legal moves you can make
—Compute new position resulting from each move
—Evaluate each to determine which 1s best
—Make that move

— Wait for your opponent to move and repeat

» Key problems are:
—Representing the “board” (i.e., game state)
—Generating all legal next boards
—Evaluating a position

Evaluation function

 Evaluation function or static evaluator used to
evaluate the “goodness” of a game position

— Contrast with heuristic search where evaluation function 1s
non-negative estimate of cost from start node to goal passing
through given node

e Zero-sum assumption permits single function to
describe goodness of board for both players

—f(n) >> 0: position n good for me; bad for you
—f(n) << 0: position n bad for me; good for you
—f(n) near 0: position n 1s a neutral position

— f(n) = +infinity: win for me

— f(n) = -infinity: win for you

Evaluation function examples

* For Tic-Tac-Toe
f(n) = [# my open 3lengths] - [# your open 3lengths]
Where 3length 1s complete row, column, or diagonal
and an open one 1s one that has no opponent marks

* Alan Turing’s function for chess
—f(n) = w(n)/b(n) where w(n) = sum of the point
value of white’s pieces and b(n) = sum of black’s

—Traditional piece values are: pawn:1; knight:3;
bishop:3; rook: 5; queen: 9

Evaluation function examples

* Most evaluation functions specified as a
weighted sum of positive features
f(n) = w, *feat,(n) + w,*feat,(n) + ... + w_*feat, (n)
« Example features for chess are piece count,

piece values, piece placement, squares
controlled, etc.

* IBM’s chess program Deep Blue (circa 1996)

had >&8K features 1n its evaluation function

But, that’s not how people play

* People use look ahead

1.6., enumerate actions, consider opponent’s
possible responses, REPEAT

* Producing a complete game tree 1s only
possible for simple games

* S0, generate a partial game tree for some
number of plys

—Move = each player takes a turn
—Ply = one player’s turn

* What do we do with the game tree?

MAX (X)

X X X B
MIN (O) X % X
r\ X x X
X0 Xl |10 Xh
MAX (X) 0 . :
* We can easily imagine
generating a complete
X0 X X0 X0 5
MIN (O) X X game tree for Tic-Tac-Toe
* Taking board symmetries
_ - into account, there are
| ‘ ‘ 138 terminal positions
X0 X X0 X [X]|O[X m i 1
AL o) (XOX X0 * 91 wins for X, 44 for O
) o xixiol (X100 and 3 draws
Wkility 1 0 +1

Game trees - LR

e Problem spaces for typical games are trees

* Root node 1s current board configuration; player
must decide best single move to make next

* Static evaluator function rates board position
f(board):real, >0 for me; <0 for opponent

 Arcs represent possible legal moves for a player

 [f my turn to move, then root is labeled a "MAX"
node; otherwise 1t’s a "MIN" node

* Each tree level’s nodes are all MAX or all MIN;

nodes at level 1 are of opposite kind from those at
level 1+1

Game Tree for Tic-Tac-Toe

MAX nodes

MIN’s play —

SR MIN nodes

I
/
1
1

Here, symmetries are used to

Terminal state ‘ reduce branching factor
(win for MAX) — @

Minimax procedure

e Create MAX node with current board
configuration

* Expand nodes to some depth (a.k.a. plys) of
lookahead in game

* Apply evaluation function at each leaf node

* Back up values for each non-leaf node until value
1s computed for the root node

— At MIN nodes: value 1s minimum of children’s values
— At MAX nodes: value 1s maximum of children’s values

* Choose move to child node whose backed-up
value determined value at root

Minimax theorem

e Intuition: assume your opponent is at least as smart as
you and play accordingly

—If she’s not, you can only do better!

* Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320

For every 2-person, 0-sum game with finite strategies, there 1s
a value V and a mixed strategy for each player, such that (a)
given player 2's strategy, best payoff possible for player 1 1s
V, and (b) given player 1's strategy, best payoff possible for
player 2 1s -V,

* You can think of this as:
—Minimizing your maximum possible loss

—Maximizing your minimum possible gain

Minimax Algorithm

OO TS
2 2 1
2 71A8 2 71A8 2 71A8

This is the move
selected by minimax

Static evaluator value

@ Max

Partial Game Tree for Tic-Tac-Toe

MAX (X)
X] X X
MIN (O) X X X
F\ . . .
X|0 x| |o| [x
MAX (X) 0
f(n)=+*1 1f position a win
MIN (O) o };0 x?: forX
f(n)=-1 1f position a win
I ’ for O
X0 X X|01X] [X|O]X === . o
TV ot XXl Xolo f(n)=0 if position a draw
Ukility 1 0 +1

Why use backed-up values?

= Intuition: if evaluation function is good, doing
look ahead and backing up values with Minimax
should be better

" Non-leaf node N’s backed-up value 1s value of best
state that MAX can reach at depth h i1f MIN plays
well

= “well” : same criterion as MAX applies to itself

" [f e 1s good, then backed-up value 1s better estimate
of STATE(N) goodness than ¢(STATE(N))

= Use lookup horizon h because time to choose move
1s limited

Minimax Tree

Pl & X

Pl 1

3
\ value computed
f value by minimax

Is that all there is to
simple games?

Alpha-beta pruning

* Improve performance of the minimax
algorithm through alpha-beta pruning

o “If you have an idea that is surely bad, don't
take the time to see how truly awful it is~ --
Pat Winston

MAX
* We don’t need to compute

the value at this node

MIN Coe .
* No matter what 1t 1s, 1t can’t

affect value of the root node
MAX

Alpha-beta pruning

 Traverse search tree 1n depth-first order
At MAX node n, alpha(n) = max value found so far
« At MIN node n, beta(n) = min value found so far

— Alpha values start at -oo and only increase, while beta
values start at +oo and only decrease

e Beta cutoff: Given MAX node N, cut off search below
N (1.e., don’t examine any more of 1ts children) if

alpha(IN) >= beta(1) for some MIN node ancestor 1 of N

* Alpha cutoff: stop searching below MIN node N 1f
beta(N)<=alpha(1) for some MAX node ancestor 1 of N

Alpha-Beta Tic-Tac-Toe Example

P

Alpha-Beta Tic-Tac-Toe Example

§

/

2

/l' he beta value of a MIN

node is an upper bound on
the final backed-up value.
It can never increase

Alpha-Beta Tic-Tac-Toe Example

p=1

T

/l' he beta value of a MIN

node is an upper bound on
the final backed-up value.
It can never increase

Alpha-Beta Tic-Tac-Toe Example

p=1

T

a=1

/I‘he alpha value of a MAX

hode is a lower bound on
the final backed-up value.
It can never decrease

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

B=1 p=-1

Search can be discontinued below /
any MIN node whose beta value is Y
less than or equal to the alpha value
of one of its MAX ancestors

2 1 -1

Another alpha-beta example

MAX A 3

AAA K

Alpha-Beta Tic-Tac-Toe Example 2

L]

MALAMAMALLL]

05 -33 3 -302 -23525 -50151 -30 -55 -33 2

O L[]

OO0 oot

05

L1 L]

-33 3 -30 2 -23 525 -50151 -30 -55

L

]

[
|
(1 L[
NN

]

Hinn
-33 2

O[]

OO0 oot

05

L1 L]

-33 3 -30 2 -23 525 -50151 -30 -55

L

]

[
|
(1 L[
NN

]

Hinn
-33 2

OL[]-3

ll NN
-33 3 -302 -23 525 -5015 1 -30 -55

05

L

[
|
(1 L[
NN

]

Hinn
-33 2

OL[]-3

ll NN
-33 3 -302 -23 525 -5015 1 -30 -55

05

L

[
|
(1 L[
NN

]

Hinn
-33 2

OL[]-3

ll NN
-33 3 -302 -23 525 -5015 1 -30 -55

05

0L

L

[
|
(1 L[
NN

]

Hinn
-33 2

0L

0[] -a] 301

mlnjn] |nlslsis]nl=]sls]s

05

-33 3 -30 2 -23 525 -50151 -30 -55

L

]

[
|
(1 L[
NN

]

Hinn
-33 2

L] L]
L] L] N L]
0 L B B N B
0 3 =
0 -3 3Lt 9 0 0 d oo OO

minls] I8l 1 oooooLooohooooo
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

or] i
oL | L] N ||
o L[| B B N ||
0 3 =
0 -3 3rf 91 0 0 d 0O o0

minls] I8l 1 oooooLooohooooo
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

or] 0
oL |] N ||
0 L N B N B
0 3 =
0 -a] 3’ s 00 ¢ 0o o O

minls] I8l 1 oooooLooohooooo
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

or] 0
oL |] N ||
0 L N B N B
0 3 2 =
0 -a] 3’ A Do d oo oo

minls] I8l 1 NohooLOOohooooo
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

oL N
oL | [[
0L N | | ||
0 3 2 []
O[] -3@5 3L 2L 1 o1 01 01 01 [

mimim] 1=l 1 mlnl | Inninlninlnislnislnls
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

o] H
oL | 2L L H
0L 2L N N N
0 3 2 []
0[] -3Q5 301 2L oo o) o 0O [OJ

mimim] 1=l 1 mlnl | Inninlninlnislnislnls
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

oL]
oL | 20 N N
0L 21 || ||
0 3 2 []
0[] -3¢ 3] 2[] (1 01 01 01 [

miulsl 1l 1 sl 111 [nulalnlsinlnlnls
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

oL

oL]
oL | 20 N N
0L 21 || ||
0 3 2 []
0[] -3¢ 3] 2[] (1 01 01 01 [

miulsl 1l 1 sl 111 [nulalnlsinlnlnls
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

ol b o

L L
05

oL |

0L

m] Jul T

ol

2L |

2L

2L

(NN ENCIO0]
-33 3 302 -23525 -50151 -30 -55

0L

5L

L

]

Hinn
-33 2

ol b o

L L
05

oL |

0L

m] Jul T

ol

2L |

2L

2L

(NN ENCIOI0]
-33 3 302 -23525 -50151 -30 -55

0L

1L

L

]

Hinn
-33 2

ol b o

L L
05

oL |

0L

m] Jul T

-33 3 -302 -23 525 -50151 -30 -55

0L

oL |
2L | || [
2L N
2 i1 L[]
2L 101 -3L1 L

(JONNENNCIOO0O0

Hinn
-33 2

ol b o

L L
05

oL |

0L

m] Jul T

-33 3 -302 -23 525 -50151 -30 -55

0L

oL |
2L | || [
2L N
2 i1 L[]
2L 101 -3L1 L

(JONNENNCIO0ONO

Hinn
-33 2

ol b o

L L
05

oL |

0L

m] Jul T

-33 3 -302 -23 525 -50151 -30 -55

0L

oL |
2l | 10| [
2L 10
2 i1 L[]
2L 101 -3L1 L

(JONNENNCIO0ONO

Hinn
-33 2

0L

oL M
oL | 2L 10 H
0Ll 2L 10 N
0 3 2 1 []
0[] -3¢ 301 2L 101 -301 - O

miulsl 1l 1 mml 111 mss mlsln
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

0L

oL M
oL | 2L 10 H
0Ll 2L 10 N
0 3 2 1 []
0[] -355 301 2L 101 -301 - O

mjulsl 11 msl 111 Iul=ls mlsln
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

0L

oL M
oL 2| 10 [
0 [l 20 1[0 -5 []
0 3 2 11 -8]
0[] -355 3[] 2L 101 -3 - L1 [

mjulsl 11 msl 111 Iul=ls mlsln
05 -33 3 -302 -23 5 25 -50151 -30 -5 -33 2

0L

oL M
oL 2| 10 [
0 [l 20 1[0 -5 []
0 3 2 11 -8]
0[] -355 3[] 2L 101 -3 - []

Illd (1NN (NN ENCIC0] 1IN
05 -333 302 -23525 -50151 -30 -55 -33 2

10

oL 10
oL 2| 10 [
0 [l 20 1[0 -5 []
0 3 2 11 -8]
0[] -355 3[] 2L 101 -3 - []

Illd (1NN (NN ENCIC0] 1IN
05 -333 302 -23525 -50151 -30 -55 -33 2

of -ab st

L L
05

oL |

0L

s Js[T

ol

2L |

2L

2L

10

1L

1L

1[1 -30

2L

1 -5

]

D el

-33 3 -302 -23 525 -50151 -30 -55

2L

2|

2L

-33 2

10

oL 1L
oL | 2L 1L 21
0L 21 1L -5 2L
0 3 2 1071 -5] 2
0[] -355 3] 2[] 101 -301 -8 2[]
lll [] (NN N DXDXI []
05

-33 3 -302 -23 525 -50151 -30 -55 -33 2

function MAX-VALUE (state, o, B)
;; o = best MAX so far; B = best MIN

if TERMINAL-TEST (state) then return
UTILITY (state)

vV o= —o

for each s in SUCCESSORS (state) do
v := MAX (v, MIN-VALUE (s, o, B))
1if v >= 3 then return v

ST Alpha-beta
return v algorithm

function MIN-VALUE (state, o, R)

1f TERMINAL-TEST (state) then return
UTILITY (state)

Vo o1=

for each s in SUCCESSORS (state) do
v := MIN (v, MAX-VALUE (s, o, B))
if v <= o then return v
B := MIN (B, V)

end

return v

Effectiveness of alpha-beta
* Alpha-beta guaranteed to compute same value for
root node as minimax, but with < computation

« Worst case: no pruning, examine b¢ leaf nodes,
where nodes have b children & d-ply search 1s done

* Best case: examine only (2b)%? leaf nodes

— You can search twice as deep as minimax!
—OQOccurs if each player’s best move is 1st alternative

 In Deep Blue’s alpha-beta pruning, average
branching factor at node was ~6 instead of ~35!

Other Improvements

Adaptive horizon + iterative deepening

Extended search: retain k>1 best paths (not just
one) extend tree at greater depth below their leaf
nodes to help dealing with “horizon effect”

Singular extension: If move 1s obviously better
than others in node at horizon h, expand 1t

Use transposition tables to deal with repeated
states

Null-move search: assume player forfeits move; do
a shallow analysis of tree; result must surely be
worse than 1f player had moved. Can be used to
recognize moves that should be explored fully.

