
Constraint
Satisfaction

Russell & Norvig Ch. 6

Overview
• Constraint satisfaction is a powerful problem-

solving paradigm
– Problem: set of variables to which we must assign

values satisfying problem-specific constraints
– Constraint programming, constraint satisfaction

problems (CSPs), constraint logic programming…

• Algorithms for CSPs
– Backtracking (systematic search)
– Constraint propagation (k-consistency)
– Variable and value ordering heuristics
– Backjumping and dependency-directed backtracking

Motivating example: 8 Queens

Generate-and-test, with no
redundancies à “only” 88 combinations

Place 8 queens on a chess board such
That none is attacking another.

8**8 is 16,777,216

Motivating example: 8-Queens

After placing these two queens, it’s
trivial to make the squares we can
no longer use

What more do we need for 8 queens?

•  Not just a successor function and goal test
•  But also

– a means to propagate constraints
imposed by one queen on the others

– an early failure test
à Explicit representation of constraints and

constraint manipulation algorithms

Informal definition of CSP
• CSP (Constraint Satisfaction Problem), given

(1) finite set of variables
(2) each with domain of possible values (often finite)
(3) set of constraints limiting values variables can assume

• Solution: an assignment of a value to each
variable such that all constraints are satisfied

• Tasks: decide if a solution exists, find a solution,
find all solutions, find “best solution” according
to some metric (objective function)

Example: 8-Queens Problem
•  Eight variables Xi, i = 1..8 where Xi is the row

number of queen in column i
•  Domain for each variable {1,2,…,8}
•  Constraints are of the forms:

– No queens on same row
Xi = k è Xj ≠ k for j = 1..8, j≠i

– No queens on same diagonal
Xi = ki, Xj = kj è|i-j| ≠| ki - kj| for j = 1..8, j≠i

Example: Task Scheduling

Examples of scheduling constraints:
• T1 must be done during T3
• T2 must be achieved before T1 starts
• T2 must overlap with T3
• T4 must start after T1 is complete

T1

T2

T3

T4

Example: Map coloring
Color this map using three colors (red, green,
blue) such that no two adjacent regions have
the same color

E

D A

C

B

Map coloring
• Variables: A, B, C, D, E all of domain RGB
• Domains: RGB = {red, green, blue}
• Constraints: A≠B, A≠C, A ≠ E, A ≠ D, B ≠ C, C ≠

D, D ≠ E
• A solution: A=red, B=green, C=blue, D=green,

E=blue

E
D A

C
B

E
D A

C
B

=>

Brute Force methods
• Finding a solution by a brute force
search is easy
–  Generate and test is a weak method
–  Just generate potential combinations and

test each

• Potentially very inefficient
– With n variables where each can have one

of 3 values, there are 3n possible solutions
to check

• There are ~190 countries in the world,
which we can color using four colors

• 4190 is a big number!

solve(A,B,C,D,E) :-
 color(A),
 color(B),
 color(C),
 color(D),
 color(E),
 not(A=B),
 not(A=B),
 not(B=C),
 not(A=C),
 not(C=D),
 not(A=E),
 not(C=D).

color(red).
color(green).
color(blue).

4**190 is 2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394176L

Example: SATisfiability
• Given a set of logic propositions containing

variables, find an assignment of the variables to
{false, true} that satisfies them

• For example, the clauses:
– (A ∨ B ∨ ¬C) ∧ (¬A ∨ D)
– (equivalent to (C → A) ∨ (B ∧ D → A)

 are satisfied by
A = false, B = true, C = false, D = false

• Satisfiability is known to be NP-complete, so in
worst case, solving CSP problems requires
exponential time

Real-world problems

•  Scheduling
•  Temporal reasoning
•  Building design
•  Planning
•  Optimization/satisfaction
•  Vision

•  Graph layout
•  Network management
•  Natural language

processing
•  Molecular biology /

genomics
•  VLSI design

CSPs are a good match for many practical problems that arise in
the real world

Definition of a constraint network (CN)

A constraint network (CN) consists of
• Set of variables X = {x1, x2, … xn}

– with associate domains {d1,d2,…dn}
– domains are typically finite

• Set of constraints {c1, c2 … cm} where
– each defines a predicate that is a relation over

a particular subset of variables (X)
– e.g., Ci involves variables {Xi1, Xi2, … Xik}

and defines the relation Ri ⊆ Di1 x Di2 x … Dik

Running example: coloring Australia

•  Seven variables: {WA, NT, SA, Q, NSW, V, T}
•  Each variable has same domain: {red, green, blue}
•  No two adjacent variables have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

T

WA

NT

SA

Q

NSW

V

Unary & binary constraints most common
Binary constraints

T

WA

NT

SA

Q

NSW

V

• Two variables are adjacent or neighbors if
 connected by an edge or an arc
• Possible to rewrite problems with higher-order
 constraints as ones with just binary constraints
• Reification

T1

T2

T3

T4

Formal definition of a CN

• Instantiations
– An instantiation of a subset of variables S

is an assignment of a value in its domain to
each variable in S

– An instantiation is legal iff it violates no
constraints

• A solution is a legal instantiation of all
variables in the network

Typical tasks for CSP
• Solution related tasks:

– Does a solution exist?
– Find one solution
– Find all solutions
– Given a metric on solutions, find the best one
– Given a partial instantiation, do any of the

above
• Transform the CN into an equivalent CN

that is easier to solve

Binary CSP
• A binary CSP is a CSP where all constraints

are binary or unary
• Any non-binary CSP can be converted into a

binary CSP by introducing additional variables
• A binary CSP can be represented as a

constraint graph, with a node for each
variable and an arc between two nodes iff
there’s a constraint involving them
– Unary constraints appear as self-referential arcs

Running example: coloring Australia

•  Seven variables: {WA, NT, SA, Q, NSW, V, T}
•  Each variable has same domain: {red, green, blue}
•  No two adjacent variables have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

T

WA

NT

SA

Q

NSW

V

A running example: coloring Australia

• Solutions are complete and consistent assignments
• One of several solutions
• Note that for generality, constraints can be expressed

as relations, e.g., WA ≠ NT is
 (WA,NT) in {(red,green), (red,blue), (green,red), (green,blue),
(blue,red),(blue,green)}

T

WA

NT

SA

Q

NSW

V

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Basic Backtracking Algorithm
CSP-BACKTRACKING(PartialAssignment a)

–  If a is complete then return a
–  X ß select an unassigned variable
–  D ß select an ordering for the domain of X
–  For each value v in D do

If v is consistent with a then
–  Add (X= v) to a
–  result ß CSP-BACKTRACKING(a)

–  If result ≠ failure then return result
–  Remove (X= v) from a

–  Return failure

Start with CSP-BACKTRACKING({})
Note: this is depth first search; can solve n-queens problems

for n ~ 25

Problems with backtracking

• Thrashing: keep repeating the same failed
variable assignments

• Things that can help avoid this:
– Consistency checking
– Intelligent backtracking schemes

• Inefficiency: can explore areas of the search
space that aren’t likely to succeed
– Variable ordering can help

Improving backtracking efficiency

Here are some standard techniques to
improve the efficiency of backtracking

– Can we detect inevitable failure early?
– Which variable should be assigned next?
– In what order should its values be tried?

Forward Checking
After variable X is assigned to
value v, examine each unassigned
variable Y connected to X by a
constraint and delete values from
Y’s domain inconsistent with v

Using forward checking and backward checking
roughly doubles the size of N-queens problems
that can be practically solved

Forward checking

• Keep track of remaining legal values for
unassigned variables

• Terminate search when any variable has no
legal values

Forward checking

Forward checking

Forward checking

Constraint propagation
• Forward checking propagates info.

 from assigned to unassigned variables, but
doesn't provide early detection for all failures

• NT and SA cannot both be blue!

Definition: Arc consistency

• A constraint C_xy is arc consistent wrt x if for
each value v of x there is an allowed value of y

• Similarly define C_xy as arc consistent wrt y
• A binary CSP is arc consistent iff every

constraint C_xy is arc consistent wrt x as well
as y

• When a CSP is not arc consistent, we can
make it arc consistent, e.g., by using AC3
– Also called “enforcing arc consistency”

Arc Consistency Example 1
• Domains

– D_x = {1, 2, 3}
– D_y = {3, 4, 5, 6}

• Constraint
– Note: for finite domains, we can represent a

constraint as an enumeration of legal values
– C_xy = {(1,3), (1,5), (3,3), (3,6)}

• C_xy is not arc consistent wrt x, neither wrt y. By
enforcing arc consistency, we get reduced domains
– D'_x = {1, 3}
– D'_y={3, 5, 6}

x y C_xy

Arc Consistency Example 2
• Domains

– D_x = {1, 2, 3}
– D_y = {1, 2, 3}

• Constraint
– C_xy = lambda v1,v2: v1 < v2

• C_xy is not arc consistent wrt x, neither wrt y. By
enforcing arc consistency, we get reduced domains
– D'_x = {1, 2}
– D'_y={2, 3}

x y C_xy

Arc consistency
• Simplest form of propagation makes each

arc consistent
• X àY is consistent iff for every value x of X

there is some allowed y

Arc consistency

• Simplest form of propagation makes each
arc consistent

• X àY is consistent iff for every value x of X
there is some allowed y

Arc consistency

If X loses a value, neighbors of X need to be
rechecked

Arc consistency
• Arc consistency detects failure earlier than

simple forward checking
• WA=red and Q=green is quickly recognized as a

deadend, i.e. an impossible partial instantiation
• The arc consistency algorithm can be run as a

preprocessor or after each assignment

General CP for Binary Constraints
Algorithm AC3
contradiction ß false
Q ß stack of all variables
 while Q is not empty and not contradiction do

X ß UNSTACK(Q)
For every variable Y adjacent to X do

If REMOVE-ARC-INCONSISTENCIES(X,Y)
If domain(Y) is non-empty then STACK(Y,Q)
else return false

Complexity of AC3

• e = number of constraints (edges)
• d = number of values per variable
• Each variable is inserted in queue up to d

times
• REMOVE-ARC-INCONSISTENCY takes O(d2)

time
•  CP takes O(ed3) time

Improving backtracking efficiency

• Some standard techniques to improve the
efficiency of backtracking
–  Can we detect inevitable failure early?
–  Which variable should be assigned next?
–  In what order should its values be tried?

• Combining constraint propagation with these
heuristics makes 1000-queen puzzles feasible

Most constrained variable

• Most constrained variable:
choose the variable with the fewest legal values

•  a.k.a. minimum remaining values (MRV)

heuristic
• After assigning a value to WA, both NT and SA

have only two values in their domains – choose one
of them rather than Q, NSW, V or T

Most constraining variable
• Tie-breaker among most constrained variables
• Choose variable involved in largest # of constraints on

remaining variables

• After assigning SA to be blue, WA, NT, Q, NSW and
V all have just two values left.

• WA and V have only one constraint on remaining
variables and T none, so choose one of NT, Q & NSW

Least constraining value

• Given a variable, choose least constraining
value:
– the one that rules out the fewest values in the

remaining variables

• Combining these heuristics makes 1000
queens feasible

• What’s an intuitive explanation for this?

Is AC3 Alone Sufficient?

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Consider the four queens problem

Solving a CSP still requires search

• Search:
– can find good solutions, but must examine

non-solutions along the way
• Constraint Propagation:

– can rule out non-solutions, but this is not
the same as finding solutions

• Interweave constraint propagation & search:
– perform constraint propagation at each

search step

1

3

2

4

3 2 4 1

1

3

2

4

3 2 4 1

1

3

2

4

3 2 4 1
1

3

2

4

3 2 4 1

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=3 eliminates { X3=2, X3=3, X3=4 }
⇒ inconsistent!

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=4 ⇒ X3=2, which eliminates { X4=2, X4=3}
⇒ inconsistent!

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X1 can’t be 1, let’s try 2

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Can we eliminate any other values?

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Arc constancy eliminates x3=3 because it’s not
consistent with X2’s remaining values

X

4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

There is only one solution with X1=2

Sudoku Example

How can we set this up as a CSP?

Sudoku
• Digit placement puzzle on 9x9 grid with unique answer
• Given an initial partially filled grid, fill remaining

squares with a digit between 1 and 9
• Each column, row, and nine 3×3 sub-grids must contain

all nine digits

• Some initial configurations are easy to solve and
some very difficult

def sudoku(initValue):
 p = Problem()
 # Define a variable for each cell: 11,12,13...21,22,23...98,99
 for i in range(1, 10) :
 p.addVariables(range(i*10+1, i*10+10), range(1, 10))
 # Each row has different values
 for i in range(1, 10) :
 p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
 # Each colum has different values
 for i in range(1, 10) :
 p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
 # Each 3x3 box has different values
 p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
 p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
 p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])

 p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
 p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
 p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])

 p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
 p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
 p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])

 # add unary constraints for cells with initial non-zero values
 for i in range(1, 10) :
 for j in range(1, 10):
 value = initValue[i-1][j-1]
 if value:
 p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
 return p.getSolution()

Sample problems
easy = [
 [0,9,0,7,0,0,8,6,0],
 [0,3,1,0,0,5,0,2,0],
 [8,0,6,0,0,0,0,0,0],
 [0,0,7,0,5,0,0,0,6],
 [0,0,0,3,0,7,0,0,0],
 [5,0,0,0,1,0,7,0,0],
 [0,0,0,0,0,0,1,0,9],
 [0,2,0,6,0,0,0,5,0],
 [0,5,4,0,0,8,0,7,0]]

hard = [
 [0,0,3,0,0,0,4,0,0],
 [0,0,0,0,7,0,0,0,0],
 [5,0,0,4,0,6,0,0,2],
 [0,0,4,0,0,0,8,0,0],
 [0,9,0,0,3,0,0,2,0],
 [0,0,7,0,0,0,5,0,0],
 [6,0,0,5,0,2,0,0,1],
 [0,0,0,0,9,0,0,0,0],
 [0,0,9,0,0,0,3,0,0]]

very_hard = [
 [0,0,0,0,0,0,0,0,0],
 [0,0,9,0,6,0,3,0,0],
 [0,7,0,3,0,4,0,9,0],
 [0,0,7,2,0,8,6,0,0],
 [0,4,0,0,0,0,0,7,0],
 [0,0,2,1,0,6,5,0,0],
 [0,1,0,9,0,5,0,4,0],
 [0,0,8,0,2,0,7,0,0],
 [0,0,0,0,0,0,0,0,0]]

Local search for constraint problems
• Remember local search?
• There’s a version of local search for CSP

problems
• Basic idea:

– generate a random “solution”
– Use metric of “number of conflicts”
– Modifying solution by reassigning one variable

at a time to decrease metric until solution found
or no modification improves it

• Has all features and problems of local search

Min Conflict Example
• States: 4 Queens, 1 per column
• Operators: Move queen in its column

• Goal test: No attacks

• Evaluation metric: Total number of attacks

How many conflicts does each state have?

Basic Local Search Algorithm
Assign a domain value di to each variable vi

while no solution & not stuck & not timed out:
 bestCost ← ∞; bestList ← ∅;
 for each variable vi | Cost(Value(vi) > 0
 for each domain value di of vi
 if Cost(di) < bestCost
 bestCost ← Cost(di); bestList ← di;
 else if Cost(di) = bestCost
 bestList ← bestList ∪ di
 Take a randomly selected move from bestList

Eight Queens using Backtracking

Try Queen 1

Try Queen 2

Try Queen 3

Try Queen 4

Try Queen 5

Stuck!

Undo move

 for Queen 5

Try next value

for Queen 5
Still Stuck

Undo move
for Queen 5
no move left

Backtrack and
undo last move

for Queen 4

Try next value

for Queen 4

Try Queen 5

Try Queen 6

Try Queen 7

Stuck Again

Undo move
for Queen 7
and so on...

Place 8 Queens

randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move

3 1 0 54 1 1 1

Take least cost
move then try
another Queen

0 4 4 4 1 1 1 1

4 3 4 1 1 1 1 3 1

3 3 3 2 1 1 1 1 2

3 4 4 1 1 1 1 3 2
2 2 3 4 2 2 2 1 2

3 2 3 2 1 1 2 3 1
2 0 4 2 1 2 2 3 1

2 3 2 2 1 3 2 3 1

2 3 3 2 1 2 2 2 1

2 3 2 3 2 2 1 3 1
2 2 3 2 1 3 2 1 1

3 2 2 3 3 3 3 0 1

Answer Found

Backtracking Performance

0

1000

2000

3000

4000

5000

0 4 8 12 16 20 24 28 32
Number of Queens

Ti
m

e
in

 s
ec

on
ds

Local Search Performance

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000
Number of Queens

Ti
m

e
in

 s
ec

on
ds

Min Conflict Performance
•  Performance depends on quality and

informativeness of initial assignment;
inversely related to distance to solution

•  Min Conflict often has astounding
performance

•  For example, it’s been shown to solve
arbitrary size (in the millions) N-Queens
problems in constant time.

•  This appears to hold for arbitrary CSPs with
the caveat…

Min Conflict Performance
Except in a certain critical range of the ratio
constraints to variables.

Famous example: labeling line drawings
•  Waltz labeling algorithm, earliest AI CSP application (1972)

– Convex interior lines are labeled as +
– Concave interior lines are labeled as –
– Boundary lines are labeled as

•  There are 208 labeling (most of which are impossible)
•  Here are the 18 legal labeling:

Labeling line drawings II

•  Here are some illegal labelings:

+ + -
-

-

Labeling line drawings
Waltz labeling algorithm: propagate constraints
repeatedly until a solution is found

A solution for one
labeling problem

A labeling problem
with no solution

Shadows add complexity

CSP was able to label scenes where some
of the lines were caused by shadows

K-consistency
• K-consistency generalizes arc consistency to

sets of more than two variables.
– A graph is K-consistent if, for legal values of

any K-1 variables in the graph, and for any Kth
variable Vk, there is a legal value for Vk

• Strong K-consistency = J-consistency for all
J<=K

• Node consistency = strong 1-consistency
• Arc consistency = strong 2-consistency
• Path consistency = strong 3-consistency

Why do we care?

1.  If we have a CSP with N variables that is
known to be strongly N-consistent, we can
solve it without backtracking

2.  For any CSP that is strongly K-consistent,
if we find an appropriate variable
ordering (one with “small enough”
branching factor), we can solve the CSP
without backtracking

Intelligent backtracking

• Backjumping: if Vj fails, jump back to the
variable Vi with greatest i such that the
constraint (Vi, Vj) fails (i.e., most recently
instantiated variable in conflict with Vi)

• Backchecking: keep track of incompatible
value assignments computed during
backjumping

• Backmarking: keep track of which
variables led to the incompatible variable
assignments for improved backchecking

Challenges for constraint reasoning
• What if not all constraints can be satisfied?

– Hard vs. soft constraints
– Degree of constraint satisfaction
– Cost of violating constraints

• What if constraints are of different forms?
– Symbolic constraints
– Numerical constraints [constraint solving]
– Temporal constraints
– Mixed constraints

Challenges for constraint reasoning
• What if constraints are represented intensionally?

– Cost of evaluating constraints (time, memory,
resources)

• What if constraints, variables, and/or values change
over time?
– Dynamic constraint networks
– Temporal constraint networks
– Constraint repair

• What if multiple agents or systems are involved in
constraint satisfaction?
– Distributed CSPs
– Localization techniques

