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Overview 
• Constraint satisfaction is a powerful problem-

solving paradigm 
– Problem: set of variables to which we must assign 

values satisfying problem-specific constraints 
– Constraint programming, constraint satisfaction 

problems (CSPs), constraint logic programming… 

• Algorithms for CSPs 
– Backtracking (systematic search) 
– Constraint propagation (k-consistency) 
– Variable and value ordering heuristics 
– Backjumping and dependency-directed backtracking 



Motivating example: 8 Queens 

Generate-and-test, with no 
redundancies à “only” 88 combinations 

Place 8 queens on a chess board such 
That none is attacking another. 

8**8 is 16,777,216 



Motivating example: 8-Queens 

After placing these two queens, it’s 
trivial to make the squares we can 
no longer use 



What more do we need for 8 queens? 

•  Not just a successor function and goal test 
•  But also  

– a means to propagate constraints 
imposed by one queen on the others  

– an early failure test 
à Explicit representation of constraints and 

constraint manipulation algorithms 



Informal definition of CSP 
• CSP (Constraint Satisfaction Problem), given 

(1) finite set of variables 
(2) each with domain of possible values (often finite) 
(3) set of constraints limiting values variables can assume 

• Solution: an assignment of a value to each 
variable such that all constraints are satisfied 

• Tasks: decide if a solution exists, find a solution, 
find all solutions, find “best solution” according 
to some metric (objective function) 



Example: 8-Queens Problem 
•  Eight variables Xi, i = 1..8 where Xi is the row 

number of queen in column i 
•  Domain for each variable {1,2,…,8} 
•  Constraints are of the forms: 

– No queens on same row 
Xi = k è Xj ≠ k  for j = 1..8, j≠i 

– No queens on same diagonal 
Xi = ki, Xj = kj è|i-j| ≠| ki - kj| for j = 1..8, j≠i 



Example: Task Scheduling 

Examples of scheduling constraints: 
• T1 must be done during T3 
• T2 must be achieved before T1 starts 
• T2 must overlap with T3 
• T4 must start after T1 is complete 

T1 

T2 

T3 

T4 



Example: Map coloring 
Color this map using three colors (red, green, 
blue) such that no two adjacent regions have 
the same color 

E 

D A 

C 

B 



Map coloring  
• Variables:  A, B, C,  D,  E all of domain RGB 
• Domains: RGB = {red, green, blue} 
• Constraints: A≠B, A≠C, A ≠ E, A ≠ D, B ≠ C, C ≠ 

D, D ≠ E 
• A solution: A=red, B=green, C=blue, D=green, 

E=blue 

E 
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C 
B 
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Brute Force methods 
• Finding a solution by a brute force 
search is easy 
–  Generate and test is a weak method 
–  Just generate potential combinations and 

test each 

• Potentially very inefficient 
– With n variables where each can have one 

of 3 values, there are 3n possible solutions 
to check 

• There are ~190 countries in the world, 
which we can color using four colors 

• 4190 is a big number! 

solve(A,B,C,D,E) :- 
  color(A), 
  color(B), 
  color(C), 
  color(D), 
  color(E), 
  not(A=B), 
  not(A=B), 
  not(B=C), 
  not(A=C), 
  not(C=D), 
  not(A=E), 
  not(C=D). 
 
color(red). 
color(green). 
color(blue). 

4**190 is  2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394176L 



Example: SATisfiability 
• Given a set of logic propositions containing 

variables, find an assignment of the variables to 
{false, true} that satisfies them 

• For example, the clauses: 
– (A ∨ B ∨ ¬C) ∧ ( ¬A ∨ D) 
– (equivalent to (C → A) ∨ (B ∧ D → A) 

 are satisfied by 
A = false, B = true,  C = false, D = false 

• Satisfiability is known to be NP-complete, so in 
worst case, solving CSP problems requires 
exponential time 



Real-world problems 

•  Scheduling 
•  Temporal reasoning 
•  Building design 
•  Planning 
•  Optimization/satisfaction 
•  Vision 

•  Graph layout 
•  Network management 
•  Natural language 

processing 
•  Molecular biology / 

genomics 
•  VLSI design 

CSPs are a good match for many practical problems that arise in 
the real world 



Definition of a constraint network (CN) 

A constraint network (CN) consists of 
• Set of variables X = {x1, x2, … xn}  

– with associate domains {d1,d2,…dn} 
– domains are typically finite 

• Set of constraints {c1, c2 … cm} where  
– each defines a predicate that is a relation over 

a particular subset of variables (X)  
– e.g., Ci involves variables {Xi1, Xi2, … Xik} 

and defines the relation Ri ⊆ Di1 x Di2 x … Dik 



Running example: coloring Australia 

•  Seven variables: {WA, NT, SA, Q, NSW, V, T} 
•  Each variable has same domain: {red, green, blue} 
•  No two adjacent variables have same value: 
  WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW, 
  SA≠V,Q≠NSW, NSW≠V 

T 

WA 

NT 

SA 

Q 

NSW 

V 



Unary & binary constraints most common 
Binary constraints 

T 

WA 

NT 

SA 

Q 

NSW 

V 

• Two variables are adjacent or neighbors if 
   connected by an edge or an arc 
• Possible to rewrite problems with higher-order 
  constraints as ones with just binary constraints 
• Reification 

T1 

T2 

T3 

T4 



Formal definition of a CN 

• Instantiations 
– An instantiation of a subset of variables S 

is an assignment of a value in its domain to 
each variable in S 

– An instantiation is legal iff it violates no 
constraints 

• A solution is a legal instantiation of all 
variables in the network 



Typical tasks for CSP 
• Solution related tasks: 

– Does a solution exist? 
– Find one solution 
– Find all solutions 
– Given a metric on solutions, find the best one 
– Given a partial instantiation, do any of the 

above 
• Transform the CN into an equivalent CN 

that is easier to solve 



Binary CSP 
• A binary CSP is a CSP where all constraints 

are binary or unary 
• Any non-binary CSP can be converted into a 

binary CSP by introducing additional variables 
• A binary CSP can be represented as a 

constraint graph, with a node for each 
variable and an arc between two nodes iff 
there’s a constraint involving them 
– Unary constraints appear as self-referential arcs 



Running example: coloring Australia 

•  Seven variables: {WA, NT, SA, Q, NSW, V, T} 
•  Each variable has same domain: {red, green, blue} 
•  No two adjacent variables have same value: 
  WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW, 
  SA≠V,Q≠NSW, NSW≠V 

T 

WA 

NT 

SA 

Q 

NSW 

V 



A running example: coloring Australia 

• Solutions are complete and consistent assignments 
• One of several solutions 
• Note that for generality, constraints can be expressed 

as relations, e.g., WA ≠ NT is 
 (WA,NT) in {(red,green), (red,blue), (green,red), (green,blue), 
(blue,red),(blue,green)} 

T 

WA 

NT 

SA 

Q 

NSW 

V 



Backtracking example 



Backtracking example 



Backtracking example 



Backtracking example 



Basic Backtracking Algorithm 
CSP-BACKTRACKING(PartialAssignment a) 

–  If a is complete then return a 
–  X ß select an unassigned variable 
–  D ß select an ordering for the domain of X 
–  For each value v in D do 

If v is consistent with a then  
–  Add (X= v) to a 
–  result ß CSP-BACKTRACKING(a) 

–  If result ≠ failure then return result   
–  Remove (X= v) from a 

–  Return failure 

Start with CSP-BACKTRACKING({}) 
Note: this is depth first search; can solve n-queens problems 

for n ~ 25 



Problems with backtracking 

• Thrashing: keep repeating the same failed 
variable assignments 

• Things that can help avoid this: 
– Consistency checking 
– Intelligent backtracking schemes 

• Inefficiency: can explore areas of the search 
space that aren’t likely to succeed 
– Variable ordering can help 

 



Improving backtracking efficiency 

Here are some standard techniques to 
improve the efficiency of backtracking 

– Can we detect inevitable failure early? 
– Which variable should be assigned next? 
– In what order should its values be tried? 



Forward Checking 
After variable X is assigned to 
value v, examine each unassigned 
variable Y connected to X by a 
constraint and delete values from 
Y’s domain inconsistent with v 

Using forward checking and backward checking 
roughly doubles the size of N-queens problems 
that can be practically solved 



Forward checking 

• Keep track of remaining legal values for 
unassigned variables 

• Terminate search when any variable has no 
legal values 



Forward checking 



Forward checking 



Forward checking 



Constraint propagation 
• Forward checking propagates info. 

 from assigned to unassigned variables, but 
doesn't provide early detection for all failures 

• NT and SA cannot both be blue! 
 



Definition: Arc consistency 

• A constraint C_xy is arc consistent wrt x if for 
each value v of x there is an allowed value of y 

• Similarly define C_xy as arc consistent wrt y 
• A binary CSP is arc consistent iff every 

constraint C_xy is arc consistent wrt x as well 
as y 

• When a CSP is not arc consistent, we can 
make it arc consistent, e.g., by using AC3 
– Also called “enforcing arc consistency” 



Arc Consistency Example 1 
• Domains 

– D_x = {1, 2, 3} 
– D_y = {3, 4, 5, 6} 

• Constraint  
– Note: for finite domains, we can represent a 

constraint as an enumeration of legal values 
– C_xy = {(1,3), (1,5), (3,3), (3,6)} 

• C_xy is not arc consistent wrt x, neither wrt y. By 
enforcing arc consistency, we get reduced domains  
– D'_x = {1, 3} 
– D'_y={3, 5, 6} 

x y C_xy 



Arc Consistency Example 2 
• Domains 

– D_x = {1, 2, 3} 
– D_y = {1, 2, 3} 

• Constraint  
– C_xy = lambda v1,v2: v1 < v2

• C_xy is not arc consistent wrt x, neither wrt y. By 
enforcing arc consistency, we get reduced domains  
– D'_x = {1, 2} 
– D'_y={2, 3} 

x y C_xy 



Arc consistency 
• Simplest form of propagation makes each 

arc consistent 
• X àY is consistent iff for every value x of X 

there is some allowed y 



Arc consistency 

• Simplest form of propagation makes each 
arc consistent 

• X àY is consistent iff for every value x of X 
there is some allowed y 



Arc consistency 

If X loses a value, neighbors of X need to be 
rechecked 



Arc consistency 
• Arc consistency detects failure earlier than 

simple forward checking 
• WA=red and Q=green is quickly recognized as a 

deadend, i.e. an impossible partial instantiation 
• The arc consistency algorithm can be run as a 

preprocessor or after each assignment 
 



General CP for Binary Constraints 
Algorithm AC3  
contradiction ß false  
Q ß stack of all variables 
 while Q is not empty and not contradiction do 

X ß UNSTACK(Q) 
For every variable Y adjacent to X do 

If REMOVE-ARC-INCONSISTENCIES(X,Y)  
If domain(Y) is non-empty then STACK(Y,Q) 
else return false 



Complexity of AC3 

• e = number of constraints (edges) 
• d = number of values per variable 
• Each variable is inserted in queue up to d 

times 
• REMOVE-ARC-INCONSISTENCY takes O(d2) 

time 
•  CP takes O(ed3) time 
 



Improving backtracking efficiency 

• Some standard techniques to improve the 
efficiency of backtracking 
–  Can we detect inevitable failure early? 
–  Which variable should be assigned next? 
–  In what order should its values be tried? 

• Combining constraint propagation with these 
heuristics makes 1000-queen puzzles feasible 



Most constrained variable 

• Most constrained variable: 
choose the variable with the fewest legal values 

 
•  a.k.a. minimum remaining values (MRV) 

heuristic 
• After assigning a value to WA, both NT and SA 

have only two values in their domains – choose one 
of them rather than Q, NSW, V or T 



Most constraining variable 
• Tie-breaker among most constrained variables 
• Choose variable involved in largest # of constraints on 

remaining variables 

• After assigning SA to be blue, WA, NT, Q, NSW and 
V all have just two values left. 

• WA and V have only one constraint on remaining 
variables and T none, so choose one of NT, Q & NSW 



Least constraining value 

• Given a variable, choose least constraining 
value: 
– the one that rules out the fewest values in the 

remaining variables 
 

• Combining these heuristics makes 1000 
queens feasible 

• What’s an intuitive explanation for this? 



Is AC3 Alone Sufficient? 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Consider the four queens problem 



Solving a CSP still requires search 

• Search:  
– can find good solutions, but must examine 

non-solutions along the way 
• Constraint Propagation: 

– can rule out non-solutions, but this is not 
the same as finding solutions 

• Interweave constraint propagation & search: 
– perform constraint propagation at each 

search step 
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4-Queens Problem 
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X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 



4-Queens Problem 
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3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 



4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

X2=3  eliminates { X3=2, X3=3, X3=4 } 
⇒ inconsistent!  



4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

X2=4 ⇒  X3=2, which eliminates { X4=2, X4=3} 
⇒ inconsistent!  



4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

X1 can’t be 1, let’s try 2 



4-Queens Problem 
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X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Can we eliminate any other values? 



4-Queens Problem 
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X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

X 



4-Queens Problem 
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3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Arc constancy eliminates x3=3 because it’s not 
consistent with X2’s remaining values 

X 



4-Queens Problem 
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3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

There is only one solution with X1=2 



Sudoku Example 

How can we set this up as a CSP? 



Sudoku 
• Digit placement puzzle on 9x9 grid with unique answer 
• Given an initial partially filled grid, fill remaining 

squares with a digit between 1 and 9 
• Each column, row, and nine 3×3 sub-grids must contain 

all nine digits 

• Some initial configurations are easy to solve and 
some very difficult 



def sudoku(initValue): 
    p = Problem() 
    # Define a variable for each cell: 11,12,13...21,22,23...98,99 
    for i in range(1, 10) : 
        p.addVariables(range(i*10+1, i*10+10), range(1, 10)) 
    # Each row has different values 
    for i in range(1, 10) : 
        p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10)) 
    # Each colum has different values 
    for i in range(1, 10) : 
        p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10)) 
    # Each 3x3 box has different values 
    p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33]) 
    p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63]) 
    p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93]) 
 
    p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36]) 
    p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66]) 
    p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96]) 
 
    p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39]) 
    p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69]) 
    p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99]) 
 
    # add unary constraints for cells with initial non-zero values 
    for i in range(1, 10) : 
        for j in range(1, 10): 
            value = initValue[i-1][j-1] 
            if value: 
                p.addConstraint(lambda var, val=value: var == val, (i*10+j,)) 
    return p.getSolution() 
 

# Sample problems 
easy = [ 
  [0,9,0,7,0,0,8,6,0], 
  [0,3,1,0,0,5,0,2,0], 
  [8,0,6,0,0,0,0,0,0], 
  [0,0,7,0,5,0,0,0,6], 
  [0,0,0,3,0,7,0,0,0], 
  [5,0,0,0,1,0,7,0,0], 
  [0,0,0,0,0,0,1,0,9], 
  [0,2,0,6,0,0,0,5,0], 
  [0,5,4,0,0,8,0,7,0]] 
 

hard = [ 
  [0,0,3,0,0,0,4,0,0], 
  [0,0,0,0,7,0,0,0,0], 
  [5,0,0,4,0,6,0,0,2], 
  [0,0,4,0,0,0,8,0,0], 
  [0,9,0,0,3,0,0,2,0], 
  [0,0,7,0,0,0,5,0,0], 
  [6,0,0,5,0,2,0,0,1], 
  [0,0,0,0,9,0,0,0,0], 
  [0,0,9,0,0,0,3,0,0]] 
 

very_hard = [ 
  [0,0,0,0,0,0,0,0,0], 
  [0,0,9,0,6,0,3,0,0], 
  [0,7,0,3,0,4,0,9,0], 
  [0,0,7,2,0,8,6,0,0], 
  [0,4,0,0,0,0,0,7,0], 
  [0,0,2,1,0,6,5,0,0], 
  [0,1,0,9,0,5,0,4,0], 
  [0,0,8,0,2,0,7,0,0], 
  [0,0,0,0,0,0,0,0,0]] 



Local search for constraint problems 
• Remember local search? 
• There’s a version of local search for CSP 

problems 
• Basic idea:  

– generate a random “solution” 
– Use metric of “number of conflicts” 
– Modifying solution by reassigning one variable 

at a time to decrease metric until solution found 
or no modification improves it 

• Has all features and problems of local search 



Min Conflict Example 
• States: 4 Queens, 1 per column 
• Operators: Move queen in its column 

• Goal test: No attacks 

• Evaluation metric: Total number of attacks 

How many conflicts does each state have? 



Basic Local Search Algorithm 
Assign a domain value di to each variable vi 

while no solution & not stuck & not timed out: 
 bestCost ← ∞;  bestList ← ∅; 
 for each variable vi | Cost(Value(vi) > 0 
  for each domain value di of vi  
   if Cost(di) < bestCost  
     bestCost ← Cost(di); bestList ← di;  
   else if Cost(di) = bestCost 
     bestList ← bestList ∪ di 
 Take a randomly selected move from bestList      



Eight Queens using Backtracking 

Try Queen 1 

 

 

Try Queen 2 

 

 

Try Queen 3 

 

 

Try Queen 4 

 

 

Try Queen 5 

Stuck! 

 

Undo move 

 for Queen 5 

 

 
Try next value 

for Queen 5 
Still Stuck 

 

 
Undo move 
for Queen 5 
no move left 

 

 
Backtrack and 
undo last move 

for Queen 4 
 

 
Try next value 

for Queen 4 
 
 

Try Queen 5 

 

 

Try Queen 6 

 

 

Try Queen 7 

Stuck Again 

 

 
Undo move 
for Queen 7 
and so on... 

 



 
Place 8 Queens 

randomly on 
the board 

 

Eight Queens using Local Search 

 
Pick a Queen: 
Calculate cost 
of each move 

 
3 1 0 54 1 1 1 

 
Take least cost 
move then try 
another Queen 

 
0 4 4 4 1 1 1 1 

4 3 4 1 1 1 1 3 1 

3 3 3 2 1 1 1 1 2 

3 4 4 1 1 1 1 3 2 
2 2 3 4 2 2 2 1 2 

3 2 3 2 1 1 2 3 1 
2 0 4 2 1 2 2 3 1 

2 3 2 2 1 3 2 3 1 

2 3 3 2 1 2 2 2 1 

2 3 2 3 2 2 1 3 1 
2 2 3 2 1 3 2 1 1 

3 2 2 3 3 3 3 0 1 

 
Answer Found 

 
 
 



Backtracking Performance 
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Min Conflict Performance 
•  Performance depends on quality and 

informativeness of initial assignment; 
inversely related to distance to solution  

•  Min Conflict often has astounding 
performance 

•  For example, it’s been shown to solve 
arbitrary size (in the millions)  N-Queens 
problems in constant time. 

•  This appears to hold for arbitrary CSPs with 
the caveat… 



Min Conflict Performance 
Except in a certain critical range of the ratio 
constraints to variables. 
 
 



Famous example: labeling line drawings 
•  Waltz labeling algorithm, earliest AI CSP application (1972) 

– Convex interior lines are labeled as + 
– Concave interior lines are labeled as – 
– Boundary lines are labeled as 

•  There are 208 labeling (most of which are impossible) 
•  Here are the 18 legal labeling: 



Labeling line drawings II 

•  Here are some illegal labelings: 

+ + - 
- 

- 



Labeling line drawings 
Waltz labeling algorithm: propagate constraints 
repeatedly until a solution is found 

A solution for one 
labeling problem 

A labeling problem 
with no solution 



Shadows add complexity 

CSP was able to label scenes where some 
of the lines were caused by shadows 



K-consistency 
• K-consistency generalizes arc consistency to 

sets of  more than two variables. 
– A graph is K-consistent if, for legal values of 

any K-1 variables in the graph, and for any Kth 
variable Vk, there is a legal value for Vk 

• Strong K-consistency = J-consistency for all 
J<=K 

• Node consistency = strong 1-consistency 
• Arc consistency = strong 2-consistency 
• Path consistency = strong 3-consistency 



Why do we care? 

1.  If we have a CSP with N variables that is 
known to be strongly N-consistent, we can 
solve it without backtracking 

 

2.  For any CSP that is strongly K-consistent, 
if we find an appropriate variable 
ordering (one with “small enough” 
branching factor), we can solve the CSP 
without backtracking 



Intelligent backtracking 

• Backjumping: if Vj fails, jump back to the 
variable Vi with greatest i such that the 
constraint (Vi, Vj) fails (i.e., most recently 
instantiated variable in conflict with Vi) 

• Backchecking: keep track of incompatible 
value assignments computed during 
backjumping 

• Backmarking: keep track of which 
variables led to the incompatible variable 
assignments for improved backchecking 



Challenges for constraint reasoning 
• What if not all constraints can be satisfied? 

– Hard vs. soft constraints 
– Degree of constraint satisfaction 
– Cost of violating constraints 

• What if constraints are of different forms? 
– Symbolic constraints 
– Numerical constraints [constraint solving] 
– Temporal constraints 
– Mixed constraints 



Challenges for constraint reasoning 
• What if constraints are represented intensionally? 

– Cost of evaluating constraints (time, memory, 
resources) 

• What if constraints, variables, and/or values change 
over time? 
– Dynamic constraint networks 
– Temporal constraint networks 
– Constraint repair 

• What if multiple agents or systems are involved in 
constraint satisfaction? 
– Distributed CSPs 
– Localization techniques 


