Informed Search Chapter 4 (b)

Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison

Today's class: local search

- Iterative improvement methods (aka local search) move from potential solution to potential solution until a goal is reached
- Exmples
 - Hill climbing
 - Simulated annealing
 - Local beam search
 - Genetic algorithms
- Online search

Hill Climbing

- Extended current path with successor that's closer to solution than end of current path
- If goal is to get to the top of a hill, then always take a step that leads you up
- Simple hill climbing: take any upward step
- Steepest ascent hill climbing: consider all possible steps, take one that goes up most
- No memory required

Hill climbing on a surface of states

evaluation

Hill-climbing search

- If there's successor **s** for current state **n** such that
 - h(s) < h(n) and h(s) <= h(t) for all successors t</p>

then move from **n** to **s**; otherwise, halt at **n**

- Look 1 step ahead to decide if a successor is better than current state; if so, move to best successor
- Like *greedy search*, but doesn't allow backtracking or jumping to alternative path since it has no memory
- Like beam search with a beam width of 1 (i.e., maximum size of the nodes list is 1)
- Not complete since search terminates at a local minima, plateau or ridge

Hill climbing example

f(**n**) = -(**number** of tiles out of place)

Exploring the Landscape

- Local Maxima: peaks that aren't highest point in space
- Plateaus: broad flat region that gives search algorithm no direction (use random walk)
- **Ridges:** flat like plateau, but with drop-offs to sides; steps to North, East, South and West may go down, but step to NW may go up

local maximum

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

Drawbacks of hill climbing

- Problems: local maxima, plateaus, ridges
- Remedies:
 - Random restart: keep restarting search from random locations until a goal is found
 - Problem reformulation: reformulate search space to eliminate these problematic features
- Some problem spaces are great for hill climbing and others are terrible

Example of a local optimum

goal

Hill Climbing and 8 Queens

The 8 Queens problem often setup as follows:

- Randomly put one queen in each column
- Goal state: no two queens attack one another
- An action is moving any queen to a different row
- Each state thus has 65 successors
- Heuristic h: # of pairs attacking one another
- Current state: h= 17
- h=0 => solution

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12						14
15	14	14	Ŵ	13	16	13	16
Ŵ	14	17	15	Ŵ	14	16	16
17	Ŵ	16	18	15	Ŵ	15	₩
18	14	Ŵ	15	15	14	Ŵ	16
14	14	13	17	12	14	12	18

Hill Climbing and 8 Queens

Figure 4.3 (a) An 8-queens state with heuristic cost estimate h = 17, showing the value of h for each possible successor obtained by moving a queen within its column. The best moves are marked. (b) A local minimum in the 8-queens state space; the state has h = 1 but every successor has a higher cost.

Images from http://en.wikipedia.org/wiki/Gradient_descent

- <u>Gradient descent</u> procedure for finding the *arg_x min f(x)*
 - choose initial x_0 randomly
 - repeat
 - $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i \eta f'(\mathbf{x}_i)$
 - until the sequence $x_0, x_1, ..., x_i, x_{i+1}$ converges
- Step size η (eta) is small (perhaps 0.1 or 0.05)
- Often used in machine learning algorithms

Gradient methods vs. Newtons method

- A reminder of Newton's method from Calculus: $x_{i+1} \leftarrow x_i - \eta f'(x_i) / f''(x_i)$
- Newton's method uses 2nd order information (second derivative, or, curvature) to take a more direct route to the minimum.
- The second-order information is more expensive to compute, but converges quicker.

Contour lines of a function Gradient descent (green) Newton's method (red)

Image from http://en.wikipedia.org/wiki/Newton's_method_in_optimization

Annealing

- In metallurgy, annealing is a technique involving heating & controlled cooling of a material to increase size of its crystals & reduce defects
- Heat causes atoms to become unstuck from initial positions (local minima of internal energy) and wander randomly through states of higher energy
- Slow cooling gives them more chances of finding configurations with lower internal energy than initial one

Simulated annealing (SA)

- SA exploits analogy between how metal cools and freezes into a minimum-energy crystalline structure & search for a minimum/maximum in a general system
- SA can avoid becoming trapped at local minima
- SA uses a random search that accepts changes increasing objective function f and some that decrease it
- SA uses a control parameter T, which by analogy with the original application is known as the system *temperature*
- T starts out high and gradually decreases toward 0

SA intuitions

- Combines hill climbing (efficiency) with random walk (completeness)
- Analogy: getting a ping-pong ball into the deepest depression in a bumpy surface
 - -Shake the surface to get the ball out of local minima
 - Don't shake too hard to dislodge it from global minimum
- Simulated annealing:
 - Start shaking hard (high temperature) and gradually reduce shaking intensity (lower temperature)
 - Escape local minima by allowing some "bad" moves
 - -But gradually reduce their size and frequency

Simulated annealing

- A "bad" move from A to B is accepted with a probability
 -(f(B)-f(A)/T)
 e
- The higher the temperature, the more likely it is that a bad move can be made
- As T tends to zero, probability tends to zero, and SA becomes more like hill climbing
- If T lowered slowly enough, SA is complete and admissible

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to "temperature"

local variables: T, a "temperature" controlling the probability of downward steps

```
\begin{array}{l} current \leftarrow \mathsf{MAKE}\operatorname{-\mathsf{NODE}}(problem\,.\mathsf{INITIAL}\operatorname{-\mathsf{STATE}}) \\ \mathbf{for} \ t = 1 \ \mathbf{to} \ \infty \ \mathbf{do} \\ T \leftarrow schedule(t) \\ \mathbf{if} \ T = 0 \ \mathbf{then} \ \mathbf{return} \ current \\ next \leftarrow a \ \mathrm{randomly} \ \mathrm{selected} \ \mathrm{successor} \ \mathrm{of} \ current \\ \Delta E \leftarrow next\,.\mathsf{VALUE} - current\,.\mathsf{VALUE} \\ \mathbf{if} \ \Delta E > 0 \ \mathbf{then} \ current \leftarrow next \\ \mathbf{else} \ current \leftarrow next \ \mathrm{only} \ \mathrm{with} \ \mathrm{probability} \ e^{\Delta E/T} \end{array}
```

Figure 4.5 The simulated annealing algorithm, a version of stochastic hill climbing where some downhill moves are allowed. Downhill moves are accepted readily early in the annealing schedule and then less often as time goes on. The *schedule* input determines the value of T as a function of time.

Local beam search

- Basic idea
 - -Begin with k random states
 - -Generate all successors of these states
 - -Keep the k best states generated by them
- Provides a simple, efficient way to share some knowledge across a set of searches
- *Stochastic beam search* is a variation:

 Probability of keeping a state is *a function* of its heuristic value

Genetic algorithms (GA)

- Search technique inspired by evolution
- Similar to stochastic beam search
- Start with *initial population* of k random states
- New states generated by *mutating* a single state or *reproducing* (combining) two parent states, selected according to their *fitness*
- Encoding used for *genome* of an individual strongly affects the behavior of search

Ma and Pa solutions

8 Queens problem

- Represent state by a string of 8 digits in {1..8}
- S = '32752411'
- Fitness function = # of non-attacking pairs
- $F(S_{solution}) = 8*7/2 = 28$
- $F(S_1) = 24$

Genetic algorithms

Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the unshaded columns are retained.

Genetic algorithms

Figure 4.6 The genetic algorithm, illustrated for digit strings representing 8-queens states. The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for mating in (c). They produce offspring in (d), which are subject to mutation in (e).

- Fitness function: number of non-attacking pairs of queens (min = 0, max = (8 × 7)/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

GA pseudo-code

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat

 $new_population \leftarrow empty set$ for i = 1 to SIZE(population) do $x \leftarrow RANDOM-SELECTION(population, FITNESS-FN)$ $y \leftarrow RANDOM-SELECTION(population, FITNESS-FN)$ $child \leftarrow REPRODUCE(x, y)$ if (small random probability) then $child \leftarrow MUTATE(child)$ add child to $new_population$ population $\leftarrow new_population$ until some individual is fit enough, or enough time has elapsed

return the best individual in population, according to FITNESS-FN

function REPRODUCE(x, y) **returns** an individual

inputs: x, y, parent individuals

 $n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n$ return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))

Ant Colony Optimization

A probabilistic search technique for problems reducible to finding good paths through graphs

Inspiration

- Ants leave nest
- Discover food
- Return to nest, preferring shorter paths
- Leave pheromone trail
- Shortest path is reinforced

An example of agents communicating through their environment

Tabu search

- Problem: Hill climbing can get stuck on local maxima
- Solution: Maintain a list of k previously visited states, and prevent the search from revisiting them
- An example of a **metaheuristic**

CLASS EXERCISE

• What would a local search approach to solving a Sudoku problem look like?

	3		
			1
3			
		2	

Online search

- Interleave computation & action
 - search some, act some
- Exploration: Can't infer action outcomes; must perform them to know result
- Relatively easy if actions are reversible (ONLINE-DFS-AGENT)
- LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on experience
- More about these in chapters on Logic and Learning!

Other topics

- Search in continuous spaces
 Different math
- Search with uncertain actions
 Must model the probabilities of an actions results
- Search with partial observations

-Acquiring knowledge as a result of search

Summary: Informed search

- Hill-climbing algorithms keep only a single state in memory, but can get stuck on local optima.
- Simulated annealing escapes local optima, and is complete and optimal given a "long enough" cooling schedule.
- Genetic algorithms can search a large space by modeling biological evolution.
- Online search algorithms are useful in state spaces with partial/no information.