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Uncertainty

Chapter 13
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An Old Problem …
Types of UncertaintyTypes of Uncertainty

• Uncertainty in prior knowledge
E.g., some causes of a disease are unknown 
and are not represented in the background 
knowledge of a medical-assistant agent
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Types of UncertaintyTypes of Uncertainty

• Uncertainty in prior knowledge
E.g., some causes of a disease are unknown 
and are not represented in the background 
knowledge of a medical-assistant agent

• Uncertainty in actions
E.g., actions are represented with relatively 
short lists of preconditions, while these lists 
are in fact arbitrary long

For example, to drive my car in the morning:
• It must not have been stolen during the night
• It must not have flat tires
• There must be gas in the tank
• The battery must not be dead
• The ignition must work
• I must not have lost the car keys
• No truck should obstruct the driveway
• I must not have suddenly become blind or paralytic
Etc…

Not only would it not be possible to list all of them, but 
would trying to do so be efficient?
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long

• Uncertainty in perception
E.g., sensors do not return exact or complete 
information about the world; a robot never knows 
exactly its position
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Sources of uncertainty:
1. Ignorance
2. Laziness (efficiency?)

What we call uncertainty is a summary 
of all that is not explicitly taken into account 
in the agent’s KB

What we call uncertainty is a summary 
of all that is not explicitly taken into account 
in the agent’s KB

QuestionsQuestions

• How to represent uncertainty in 
knowledge?

• How to perform inferences with 
uncertain knowledge?

• Which action to choose under 
uncertainty?
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How do we deal with uncertainty?

• Implicit:
• Ignore what you are uncertain of when you can
• Build procedures that are robust to uncertainty

• Explicit:
• Build a model of the world that describe 

uncertainty about its state, dynamics, and 
observations

• Reason about the effect of actions given the 
model

Handling Uncertainty

Approaches:
1. Default reasoning
2. Worst-case reasoning
3. Probabilistic reasoning

Default Reasoning

• Creed: The world is fairly normal. 
Abnormalities are rare

• So, an agent assumes normality, until 
there is evidence of the contrary

• E.g., if an agent sees a bird x, it assumes 
that x can fly, unless it has evidence that 
x is a penguin, an ostrich, a dead bird, a 
bird with broken wings, …

Representation in Logic

• BIRD(x) ∧ ¬ABF(x) ⇒ FLIES(x)
• PENGUINS(x) ⇒ ABF(x)
• BROKEN-WINGS(x) ⇒ ABF(x)
• BIRD(Tweety)
• …

Default rule: Unless ABF(Tweety) can be proven 
True, assume it is False

But what to do if several defaults are contradictory?
Which ones to keep? Which one to reject?

Very active research field in the 80’s
Non-monotonic logics: defaults, circumscription,
closed-world assumptions

Applications to databases
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Worst-Case Reasoning

• Creed: Just the opposite! The world is ruled 
by Murphy’s Law

• Uncertainty is defined by sets, e.g., the set 
possible outcomes of an action, the set of 
possible positions of a robot

• The agent assumes the worst case, and 
chooses the actions that maximizes a utility 
function in this case

• Example: Adversarial search

Probabilistic Reasoning

• Creed: The world is not divided between 
“normal” and “abnormal”, nor is it 
adversarial. Possible situations have 
various likelihoods (probabilities)

• The agent has probabilistic beliefs –
pieces of knowledge with associated 
probabilities (strengths) – and chooses 
its actions to maximize the expected 
value of some utility function

How do we represent 
Uncertainty?

We need to answer several questions:
• What do we represent & how we represent it?

• What language do we use to represent our 
uncertainty? What are the semantics of our 
representation?

• What can we do with the representations?
• What queries can be answered? How do we 

answer them?
• How do we construct a representation?

• Can we ask an expert? Can we learn from data?

Target Tracking Example

Maximization of worst-case value of utility
vs. of expected value of utility

targetrobot

Utility =
escape time
of target
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Probability

• A well-known and well-understood framework 
for uncertainty

• Clear semantics
• Provides principled answers for:

• Combining evidence
• Predictive & Diagnostic reasoning
• Incorporation of new evidence

• Intuitive (at some level) to human experts
• Can be learned Axioms of probability

Notion of Probability

•The probability of a proposition A is a real 
number P(A) between 0 and 1

•P(True) = 1 and P(False) = 0
•P(AvB) = P(A) + P(B) - P(A∧B)

You drive on 95 to UMBC often, and you notice that 40%
of the times there is a traffic slowdown at the 695 beltway
The next time you plan to drive on 95, you will believe that the 
proposition “there is a slowdown at the 695 beltway” is True with 
probability 0.4

P(Av¬A) = P(A)+P(¬A)-P(A ∧¬A)

P(True) = P(A)+P(¬A)-P(False)

1 = P(A) + P(¬A)

So:
P(A) = 1 - P(¬A)

Frequency Interpretation

•Draw a ball from a urn containing n balls 
of the same size, r red and s yellow.

•The probability that the proposition A = 
“the ball is red” is true corresponds to the 
relative frequency with which  we expect 
to draw a red ball P(A) = ?

Subjective Interpretation

There are many situations in which there 
is no objective frequency interpretation:
• On a windy day, just before paragliding from 

the top of El Capitan, you say “there is 
probability 0.05 that I am going to die” 

• You have worked hard on your AI class and 
you believe that the probability that you will 
get an A is 0.9
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Bayesian Viewpoint

• probability is "degree-of-belief", or "degree-of-
uncertainty". 

• To the Bayesian, probability lies subjectively in the 
mind, and can--with validity--be different for people 
with different information
• e.g., the probability that you will get an A in 

471/671 
• In contrast, to the frequentist, probability lies 

objectively in the external world.
• The Bayesian viewpoint has been gaining popularity 

in the past decade, largely due to the increase 
computational power that makes many of the 
calculations that were previously intractable, feasible.

Random Variables

• A proposition that takes the value True with 
probability p and False with probability 1-p is 
a random variable with distribution (p,1-p)

• If a urn contains balls having 3 possible 
colors – red, yellow, and blue – the color of a 
ball picked at random from the bag is a 
random variable with 3 possible values

• The (probability) distribution of a random 
variable X with n values x1, x2, …, xn is:

(p1, p2, …, pn) 
with P(X=xi) = pi and Σi=1,…,n pi = 1

Expected Value

• Random variable X with n values x1,…,xn
and distribution (p1,…,pn)
E.g.: X is the state reached after doing 
an action A under uncertainty

• Function U of X
E.g., U is the utility of a state

• The expected value of U after doing A is
E[U] = Σi=1,…,n pi U(xi)

Joint Distribution

• k random variables X1, …, Xk

• The joint distribution of these variables is a 
table in which each entry gives the probability 
of one combination of values of X1, …, Xk

• Example:

P(Cavity∧¬Toothache)P(¬Cavity∧Toothache)

0.890.01¬Cavity

0.060.04Cavity

¬ToothacheToothache
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Joint Distribution Says It All

• P(Toothache) = P((Toothache ∧Cavity) v (Toothache∧¬Cavity))
= P(Toothache ∧Cavity) + P(Toothache∧¬Cavity)
=  0.04 + 0.01 = 0.05

• P(Toothache v Cavity)
= P((Toothache ∧Cavity) v (Toothache∧¬Cavity) 

v (¬Toothache ∧Cavity))
= 0.04 + 0.01 + 0.06 = 0.11

0.890.01¬Cavity

0.060.04Cavity

¬ToothacheToothache

Joint Distribution Says It All

• P(Toothache) = ?? 

• P(Toothache v Cavity) = ??

0.890.01¬Cavity

0.060.04Cavity

¬ToothacheToothache

Conditional Probability

•Definition:
P(A|B) =P(A∧B) / P(B)

•Read P(A|B): probability of A given B

•can also write this as:
P(A∧B) = P(A|B) P(B)

•called the product rule

Example

• P(Cavity|Toothache) = P(Cavity∧Toothache) / P(Toothache) 
• P(Cavity∧Toothache) = ?
• P(Toothache) = ?
• P(Cavity|Toothache) = 0.04/0.05 = 0.8

0.890.01¬Cavity

0.060.04Cavity

¬ToothacheToothache
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Generalization

• P(A ∧ B ∧ C) = P(A|B,C) P(B|C) P(C)

Bayes’ Rule

P(A ∧ B) = P(A|B) P(B)
= P(B|A) P(A)

P(B|A) =
P(A|B) P(B)

P(A)

Example

•Given:
• P(Cavity)=0.1
• P(Toothache)=0.05
• P(Cavity|Toothache)=0.8

•Bayes’ rule tells:
• P(Toothache|Cavity)=(0.8x0.05)/0.1
• =0.4

0.890.01¬Cavity

0.060.04Cavity

¬ToothacheToothache

Generalization

•P(A∧B∧C) = P(A∧B|C) P(C) 
= P(A|B,C) P(B|C) P(C)

•P(A∧B∧C) = P(A∧B|C) P(C) 
= P(B|A,C) P(A|C) P(C)

• P(B|A,C) =
P(A|B,C) P(B|C)

P(A|C)
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Representing Probability
• Naïve representations of probability run into 

problems.
• Example:

• Patients in hospital are described by several 
attributes:

• Background: age, gender, history of diseases, …
• Symptoms: fever, blood pressure, headache, …
• Diseases: pneumonia, heart attack, …

• A probability distribution needs to assign a number to 
each combination of values of these attributes
• 20 attributes require 106 numbers
• Real examples usually involve hundreds of attributes

Practical Representation

•Key idea -- exploit regularities

•Here we focus on exploiting 
(conditional) independence
properties

Example

• customer purchases: Bread, Bagels and Butter (R,A,U)

0.16111

0.04011

0.18101

0.12001

0.08110

0.12010

0.06100

0.24000

p(r,a,u)ButterBagelsBread

Independent Random 
Variables

• Two variables X and Y are independent if
• P(X = x|Y = y) = P(X = x) for all values x,y
• That is, learning the values of Y does not change 

prediction of X

• If X and Y are independent then 
• P(X,Y) = P(X|Y)P(Y) = P(X)P(Y)

• In general, if X1,…,Xn are independent, then
• P(X1,…,Xn)= P(X1)...P(Xn)
• Requires O(n) parameters
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Example #1

0.16111
0.04011
0.18101
0.12001
0.08110
0.12010
0.06100
0.24000

p(r,a,u)ButterBagelsBread

1

0

p(r)Bread

0.41

0.60

p(a)Bagels

0.481

0.520

p(u)Butter

11

01

10

00

p(r,a)BagelsBread

11

01

10

00

p(a,u)ButterBagels

P(a,u)=P(a)P(u)? P(r,a)=P(r)P(a)?

Example #1

0.16111
0.04011
0.18101
0.12001
0.08110
0.12010
0.06100
0.24000

p(r,a,u)ButterBagelsBread

0.51

0.50

p(r)Bread

0.41

0.60

p(a)Bagels

0.481

0.520

p(u)Butter

0.211

0.301

0.210

0.300

p(r,a)BagelsBread

0.2411

0.1601

0.2410

0.3600

p(a,u)ButterBagels

P(a,u)=P(a)P(u)? P(r,a)=P(r)P(a)?

Conditional Independence

• Unfortunately, random variables of interest 
are not independent of each other

• A more suitable notion is that of conditional 
independence

• Two variables X and Y are conditionally 
independent given Z if
• P(X = x|Y = y,Z=z) = P(X = x|Z=z) for all values x,y,z
• That is, learning the values of Y does not change prediction 

of X once we know the value of Z
• notation: I( X ; Y | Z )

Car Example

• Three propositions:
• Gas
• Battery
• Starts

• P(Battery|Gas) = P(Battery)
Gas and Battery are independent

• P(Battery|Gas,Starts) ≠ P(Battery|Starts)
Gas and Battery are not independent given 
Starts
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Example #2

0.144111

0.016011

0.036101

0.004001

0.016110

0.064010

0.144100

0.576000

p(h,m,k)KetchupMustardHotdogs

0.241

0.760

p(m)Mustard

0.341

0.660

p(k)Ketchup

0.1611

0.0801

0.1810

0.5800

p(m,k)KetchupMustard

P(m,k)=P(m)P(k)?

Example #2

0.144111

0.016011

0.036101

0.004001

0.016110

0.064010

0.144100

0.576000

p(h,m,k)KMH

0.811

0.101

1

0

Hotdogs

0.20

0.90

p(m|h)Mustard

0.02011

0.02100

0.18110

0.08101

0.72111

0

0

0

Hotdogs

0.0801

0.1810

0.7200

p(m,k|h)KetchupMustard

P(m,k|h)=P(m|h)P(k|h)?

0.911

0.201

1

0

Hotdogs

0.10

0.80

p(k|h)Ketchup

Example #1

0.16111

0.04011

0.18101

0.12001

0.08110

0.12010

0.06100

0.24000

p(r,a,u)ButterBagelsBread

P(r,a|u)=P(r|u)P(a|u)?

0.70…11

0.30…01

1

0

Butter

0.29…0

0.69…0

p(r|u)Bread

0.511

0.30…01

1

0

Butter

0.50

0.69…0

p(a|u)Bagels

0.08…011

0.12…100

0.17...110

0,38…101

0.33…111

0

0

0

Butter

0.23…01

0.23…10

0.46…00

p(r,a|u)BagelsBread

Summary

•Example 1: I(X,Y|∅) and not I(X,Y|Z)
•Example 2: I(X,Y|Z) and not I(X,Y|∅) 

•conclusion: independence does not 
imply conditional independence!
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Example: Naïve Bayes Model
• A common model in early diagnosis:

• Symptoms are conditionally independent given the 
disease (or fault)

• Thus, if 
• X1,…,Xn denote whether the symptoms exhibited 

by the patient (headache, high-fever, etc.) and 
• H denotes the hypothesis about the patients 

health
• then, P(X1,…,Xn,H) = P(H)P(X1|H)…P(Xn|H),
• This naïve Bayesian model allows compact 

representation
• It does embody strong independence assumptions


