Propositional and First-Order Logic

Chapter 7.4-7.8, 8.1-8.3, 8.5

Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Overview

- Propositional logic (quick review)
- · Problems with propositional logic
- First-order logic (review)
 - Properties, relations, functions, quantifiers, ...
 - Terms, sentences, wffs, axioms, theories, proofs, \ldots
- Extensions to first-order logic
- · Logical agents
 - Reflex agents
 - Representing change: situation calculus, frame problem
 - Preferences on actions
 - Goal-based agents

Propositional Logic: Review

Propositional logic

- Logical constants: true, false
- Propositional symbols: P, Q, S, ... (atomic sentences)
- Wrapping **parentheses**: (...)
- Sentences are combined by **connectives**:
 - ∧...and [conjunction]
 - V...or [disjunction]
 - \Rightarrow ...implies [implication / conditional]
 - ⇔..is equivalent [biconditional]

- ...not [negation]

• Literal: atomic sentence or negated atomic sentence

1

– P, ¬¬ P

• $(P \land Q) \rightarrow R$

"If it is hot and humid, then it is raining"

• $Q \rightarrow P$

"If it is humid, then it is hot"

- Q
- "It is humid."
- A better way: Ho = "It is hot" Hu = "It is humid" R = "It is raining"

Propositional logic (PL)

- A simple language useful for showing key ideas and definitions
- User defines a set of propositional symbols, like P and Q.
- User defines the **semantics** of each propositional symbol:
 - P means "It is hot"
 - Q means "It is humid"
 - R means "It is raining"
- A sentence (well formed formula) is defined as follows:
 - A symbol is a sentence
 - If S is a sentence, then \neg S is a sentence
 - If S is a sentence, then (S) is a sentence
 - If S and T are sentences, then (S \vee T), (S \wedge T), (S \rightarrow T), and (S \leftrightarrow T) are sentences
 - A sentence results from a finite number of applications of the above rules

A BNF grammar of sentences in propositional logic

Some terms

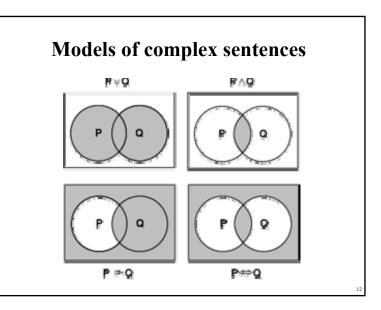
- The meaning or **semantics** of a sentence determines its **interpretation**.
- Given the truth values of all symbols in a sentence, it can be "evaluated" to determine its **truth value** (True or False).
- A **model** for a KB is a "possible world" (assignment of truth values to propositional symbols) in which each sentence in the KB is True.

More terms

- A valid sentence or tautology is a sentence that is True under all interpretations, no matter what the world is actually like or what the semantics is. Example: "It's raining or it's not raining."
- An **inconsistent sentence** or **contradiction** is a sentence that is False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- **P** entails **Q**, written **P** |= **Q**, means that whenever **P** is True, so is **Q**. In other words, all models of **P** are also models of **Q**.

Truth tables				
Đ2	sá	Qr		
<u>p</u> q	$p \cdot q$	p q p¥q		
T T T F	T F F	T T T T F T		
F T F F	F	FT T FF F		
<i>¥</i>	then	Not		
P 9	$p \supset q$	p ~p		
5 6 F F	T F T	T F F T		
		×. 10		

		T	ruth ta	bles II		
he five	e logical	connectiv	ves:			
Ŗ	2	=P	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	P @ 0
Edise Edise True True	Folter Trac Folter Trac	Tine Tine Estre Estre	False False False Truc	Folm Taic Tais Taic	True True Fulse True	Trac Folse Folse Trac
(com	plex sent					
		H _	P∀H	(P & H) A = H	enta entre	$\wedge \neg H ? \Rightarrow P$
Р			Fidae	Fidae		FILE
Fels	- Fi	4 ac				
- F	5	dae nie dae	Trac	Felse True		True True



Inference rules

- **Logical inference** is used to create new sentences that logically follow from a given set of predicate calculus sentences (KB).
- An inference rule is **sound** if every sentence X produced by an inference rule operating on a KB logically follows from the KB. (That is, the inference rule does not create any contradictions)
- An inference rule is **complete** if it is able to produce every expression that logically follows from (is entailed by) the KB. (Note the analogy to complete search algorithms.)

Sound rules of inference

• Here are some examples of sound rules of inference – A rule is sound if its conclusion is true whenever the premise is true

<u>RULE</u> Modus Ponens	$\frac{\text{PREMISE}}{A, A \to B}$	CONCLUSION B
And Introduction	A, B	$A \wedge B$
And Elimination	$A \wedge B$	А
Double Negation	$\neg \neg A$	А
Unit Resolution	$A \lor B, \neg B$	А
Resolution	$\mathbf{A} \lor \mathbf{B}, \neg \mathbf{B} \lor \mathbf{C}$	A v C

Soundness of modus ponens

Α	В	$\mathbf{A} \rightarrow \mathbf{B}$	OK?
True	True	True	\checkmark
True	False	False	\checkmark
False	True	True	\checkmark
False	False	True	\checkmark

Soundness of the resolution inference rule

False	False	Edse	False	Tene	False
False	False	Tare	Fulse	Tene	Tene
Falar	True	Estar	T616	False	Fuls
Fedse	Time	Tare	Time	True	Tene
Time	False	False Tare	Time	Tene	Tene
True	False	Tare	True	Tene	Tene
True	True	Folse	Time	False	Tene
Time	Time	Tare	Time	Tene	Tene
_					

Proving unings						
premise or a se	1	s, where each sentence is either a a earlier sentences in the proof				
The last senter	nce is the theorem (a	also called goal or query) that				
we want to pro	we want to prove.					
• Example for the "weather problem" given above.						
1 Hu	Premise	"It is humid"				
2 Hu→Ho	Premise	"If it is humid, it is hot"				
3 Ho	Modus Ponens(1,2)	"It is hot"				
4 (Ho∧Hu)→R	Premise	"If it's hot & humid, it's raining"				
5 Ho∧Hu	And Introduction(1,3)	"It is hot and humid"				
6 R	Modus Ponens(4,5)	"It is raining"				

Proving things

Horn sentences • A Horn sentence or Horn clause has the form: $P1 \land P2 \land P3 \dots \land Pn \rightarrow O$ or alternatively $(\mathbf{P} \rightarrow \mathbf{Q}) = (-\mathbf{P} \lor \mathbf{Q})$ $\neg P1 \lor \neg P2 \lor \neg P3 \dots \lor \neg Pn \lor Q$ where Ps and O are non-negated atoms • To get a proof for Horn sentences, apply Modus

- Ponens repeatedly until nothing can be done
- We will use the Horn clause form later

Entailment and derivation

- Entailment: KB |= Q
 - Q is entailed by KB (a set of premises or assumptions) if and only if there is no logically possible world in which Q is false while all the premises in KB are true.
 - Or, stated positively, Q is entailed by KB if and only if the conclusion is true in every logically possible world in which all the premises in KB are true.

• Derivation: KB |- Q

- We can derive Q from KB if there is a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q

Two important properties for inference

Soundness: If KB |- Q then KB |= Q

- If Q is derived from a set of sentences KB using a given set of rules of inference, then Q is entailed by KB.
- Hence, inference produces only real entailments, or any sentence that follows deductively from the premises is valid.

Completeness: If KB |= Q then KB |- Q

- If Q is entailed by a set of sentences KB, then Q can be derived from KB using the rules of inference.
- Hence, inference produces all entailments, or all valid sentences can be proved from the premises.

Problems with Propositional Logic

Propositional logic is a weak language

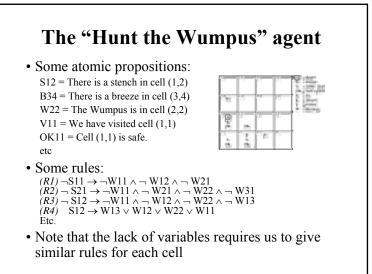
- Hard to identify "individuals" (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of information
 - FOL adds relations, variables, and quantifiers, e.g.,
 - "Every elephant is gray": $\forall x (elephant(x) \rightarrow gray(x))$
 - *"There is a white alligator":* ∃ x (alligator(X) ^ white(X))

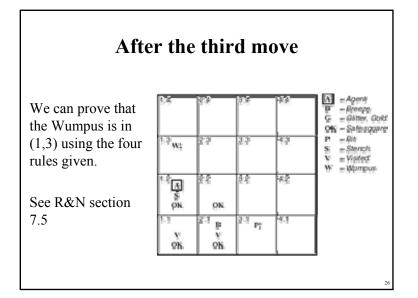
Example

- Consider the problem of representing the following information:
 - -Every person is mortal.
 - -Confucius is a person.
 - -Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Example II

- In PL we have to create propositional symbols to stand for all or part of each sentence. For example, we might have:
 P = "person"; Q = "mortal"; R = "Confucius"
- so the above 3 sentences are represented as: $P \rightarrow Q; R \rightarrow P; R \rightarrow Q$
- Although the third sentence is entailed by the first two, we needed an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes "person" and "mortal"
- To represent other individuals we must introduce separate symbols for each one, with some way to represent the fact that all individuals who are "people" are also "mortal"





Proving W13

- Apply MP with ¬S11 and R1: ¬W11∧¬W12∧¬W21
- Apply And-Elimination to this, yielding 3 sentences:
 W11, W12, W21
- Apply MP to ~S21 and R2, then apply And-elimination: \neg W22, \neg W21, \neg W31
- Apply MP to S12 and R4 to obtain: W13 ∨ W12 ∨ W22 ∨ W11
- Apply Unit resolution on (W13 \vee W12 \vee W22 \vee W11) and \neg W11: W13 \vee W12 \vee W22
- Apply Unit Resolution with (W13 \vee W12 \vee W22) and \neg W22: W13 \vee W12
- Apply UR with (W13 \vee W12) and \neg W12: W13
- QED

Problems with the propositional Wumpus hunter

- Lack of variables prevents stating more general rules
 - -We need a set of similar rules for each cell
- Change of the KB over time is difficult to represent
 - Standard technique is to index facts with the time when they're true
 - This means we have a separate KB for every time point

Propositional logic: Summary

- The process of deriving new sentences from old one is called inference.
 Sound inference processes derives true conclusions given true premises
 - Complete inference processes derive all true conclusions from a set of premises
- · A valid sentence is true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then—given its premise—its consequent can be derived
- Different logics make different **commitments** about what the world is made of and what kind of beliefs we can have regarding the facts
 - Logics are useful for the commitments they do not make because lack of commitment gives the knowledge base engineer more freedom
- **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented
 - It has a simple syntax and simple semantics. It suffices to illustrate the process
 of inference
 - Propositional logic quickly becomes impractical, even for very small worlds

First-Order Logic: Review

First-order logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - **Properties** of objects that distinguish them from other objects
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
 - Objects: Students, lectures, companies, cars ...
 - Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
 - Properties: blue, oval, even, large, ...
 - Functions: father-of, best-friend, second-half, one-more-than
 - •••

User provides

- Constant symbols, which represent individuals in the world
- Mary
- 3
- Green
- · Function symbols, which map individuals to individuals
 - father-of(Mary) = John
 - $-\operatorname{color-of}(\operatorname{Sky}) = \operatorname{Blue}$
- **Predicate symbols**, which map individuals to truth values
 - -greater(5,3)
 - green(Grass)
 - color(Grass, Green)

FOL Provides

Variable symbols

- -E.g., x, y, foo
- Connectives
 - -Same as in PL: not (\neg) , and (\land) , or (\lor) , implies (\rightarrow) , if and only if (biconditional \leftrightarrow)

Quantifiers

- -Universal $\forall x \text{ or } (Ax)$
- -Existential $\exists x \text{ or } (Ex)$

Sentences are built from terms and atoms

- A term (denoting a real-world individual) is a constant symbol, a variable symbol, or an n-place function of n terms.
 x and f(x₁, ..., x_n) are terms, where each x_i is a term.
 A term with no variables is a ground term
- An **atomic sentence** (which has value true or false) is an n-place predicate of n terms
- A **complex sentence** is formed from atomic sentences connected by the logical connectives:

 $\neg P, P \lor Q, P \land Q, P \rightarrow Q, P \leftrightarrow Q \text{ where } P \text{ and } Q \text{ are sentences}$

- A quantified sentence adds quantifiers \forall and \exists
- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.

 $(\forall x)P(x,y)$ has x bound as a universally quantified variable, but y is free.

A BNF for FOL

```
S := <Sentence> ;
<Sentence> := <AtomicSentence> |
         <Sentence> <Connective> <Sentence>
         <Quantifier> <Variable>,... <Sentence> |
         "NOT" <Sentence>
         "(" <Sentence> ")";
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
                 <Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")"
         <Constant>
         <Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;
<Function> := "Mother" | "LeftLegOf" | ... ;
```

Quantifiers Universal quantification (∀x)P(x) means that P holds for all values of x in the domain associated with that variable E.g., (∀x) dolphin(x) → mammal(x) Existential quantification (∃ x)P(x) means that P holds for some value of x in the domain associated with that variable E.g., (∃ x) mammal(x) ∧ lays-eggs(x) Permits one to make a statement about some object without naming it

Quantifiers

- Universal quantifiers are often used with "implies" to form "rules": (∀x) student(x) → smart(x) means "All students are smart"
- Universal quantification is *rarely* used to make blanket statements about every individual in the world:
 - $(\forall x)$ student(x) \land smart(x) means "Everyone in the world is a student and is smart"
- Existential quantifiers are usually used with "and" to specify a list of properties about an individual:

 $(\exists x)$ student(x) \land smart(x) means "There is a student who is smart"

• A common mistake is to represent this English sentence as the FOL sentence:

 $(\exists x)$ student $(x) \rightarrow$ smart(x)

- But what happens when there is a person who is not a student?

Quantifier Scope FOL sentences have structure, like programs In particular, the variables in a sentence have a scope For example, suppose we want to say "everyone who is alive loves someone" (∀x) alive(x) → (∃y) loves(x,y) (∀x) alive(x) → (∃y) loves(x,y)

Quantifier Scope

- Switching the order of universal quantifiers *does not* change the meaning:
 - $(\forall x)(\forall y)P(x,y) \leftrightarrow (\forall y)(\forall x) P(x,y)$
 - "Dogs hate cats".
- Similarly, you can switch the order of existential quantifiers:
 - $(\exists x)(\exists y)P(x,y) \leftrightarrow (\exists y)(\exists x) P(x,y)$
 - "A cat killed a dog"
- Switching the order of universals and existentials *does* change meaning:
 - Everyone likes someone: $(\forall x)(\exists y)$ likes(x,y)
 - Someone is liked by everyone: $(\exists y)(\forall x)$ likes(x,y)

Connections between All and Exists

- We can relate sentences involving ∀ and ∃ using De Morgan's laws:
 - 1. $(\forall x) \neg P(x) \leftrightarrow \neg(\exists x) P(x)$
 - 2. $\neg(\forall x) P \leftrightarrow (\exists x) \neg P(x)$

Scope of x Scope of y

- 3. $(\forall x) P(x) \leftrightarrow \neg (\exists x) \neg P(x)$
- 4. $(\exists x) P(x) \leftrightarrow \neg(\forall x) \neg P(x)$
- Examples
 - 1. All dogs don't like cats \leftrightarrow No dog's like cats
 - Not all dogs dance ↔ There is a dog that doesn't dance.
 - 3. All dogs sleep \leftrightarrow There is no dog that doesn't sleep
 - 4. There is a dog that talks \leftrightarrow Not all dogs can't talk

Quantified inference rules

- Universal instantiation
 - $-\forall x P(x) \therefore P(A)$
- Universal generalization
 - $-P(A) \wedge P(B) \dots \therefore \forall x P(x)$
- Existential instantiation
- $-\exists x P(x) \therefore P(F)$
 - ← skolem constant F
- Existential generalization

-P(A) $\therefore \exists x P(x)$

Existential instantiation (a.k.a. existential elimination)

- From $(\exists x) P(x)$ infer P(c)
- Example:
 - $(\exists x) eats(Ziggy, x) \rightarrow eats(Ziggy, Stuff)$
- Note that the variable is replaced by a brand-new constant not occurring in this or any other sentence in the KB
- Also known as skolemization; constant is a skolem constant
- In other words, we don't want to accidentally draw other inferences about it by introducing the constant
- Convenient to use this to reason about the unknown object, rather than constantly manipulating the existential quantifier

Universal instantiation (a.k.a. universal elimination)

- If $(\forall x) P(x)$ is true, then P(C) is true, where C is any constant in the domain of x
- Example:
 - $(\forall x)$ eats(Ziggy, x) \Rightarrow eats(Ziggy, IceCream)
- The variable symbol can be replaced by any ground term, i.e., any constant symbol or function symbol applied to ground terms only

Existential generalization (a.k.a. existential introduction)

- If P(c) is true, then $(\exists x) P(x)$ is inferred.
- Example
 - eats(Ziggy, IceCream) \Rightarrow (\exists x) eats(Ziggy, x)
- All instances of the given constant symbol are replaced by the new variable symbol
- Note that the variable symbol cannot already exist anywhere in the expression

Translating English to FOL

- Every gardener likes the sun. $\forall x \text{ gardener}(x) \rightarrow \text{likes}(x,\text{Sun})$
- You can fool some of the people all of the time. $\exists x \ \forall t \ person(x) \land time(t) \rightarrow can-fool(x,t)$
- You can fool all of the people some of the time. (two ways)

 $\forall x \exists t (person(x) \rightarrow time(t) \land can-fool(x,t)) \\ \forall x (person(x) \rightarrow \exists t (time(t) \land can-fool(x,t)) \\ \end{cases}$

All purple mushrooms are poisonous.
 ∀x (mushroom(x) ∧ purple(x)) → poisonous(x)

Translating English to FOL

• No purple mushroom is poisonous. (two ways) ¬∃x purple(x) ∧ mushroom(x) ∧ poisonous(x)

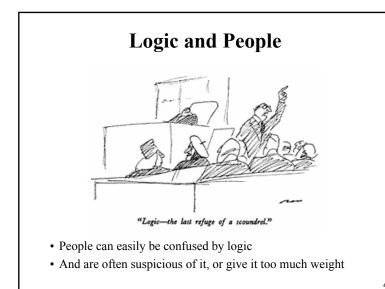
 $\forall x \ (mushroom(x) \land purple(x)) \rightarrow \neg poisonous(x)$

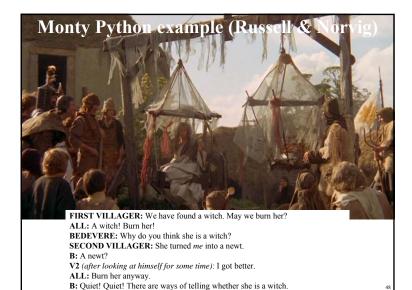
- There are exactly two purple mushrooms. ∃x ∃y mushroom(x) ∧ purple(x) ∧ mushroom(y) ∧ purple(y) ^ ¬(x=y) ∧ ∀z (mushroom(z) ∧ purple(z)) → ((x=z) ∨ (y=z))
- Bush is not tall.

¬tall(Bush)

• X is above Y iff X is on directly on top of Y or there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.

 $\forall x \ \forall y \ above(x,y) \leftrightarrow (on(x,y) \lor \ \exists z \ (on(x,z) \land above(z,y)))$





B: Tell me... what do you do with witches? ALL: Burn them! B: And what do you burn, apart from witches? V4: ...wood? B: So why do witches burn? V2 (pianissimo): because they're made of wood? B: Good. ALL: I see. Yes, of course.

B: So how can we tell if she is made of wood? V1: Make a bridge out of her. B: Ah... but can you not also make bridges out of stone? ALL: Yes, of course... um... er... **B:** Does wood sink in water? ALL: No, no, it floats. Throw her in the pond. B: Wait. Wait... tell me, what also floats on water?

ALL: Bread? No, no no. Apples... gravy... very small rocks...

B: No, no, no,

KING ARTHUR: A duck! (They all turn and look at Arthur. Bedevere looks up, very impressed.) B: Exactly. So... logically... V1 (beginning to pick up the thread): If she... weighs the same as a duck... she's made of wood. **B:** And therefore? ALL: A witch!

Monty Python Fallacy #1

- $\forall x \text{ witch}(x) \rightarrow \text{burns}(x)$
- $\forall x \text{ wood}(x) \rightarrow \text{burns}(x)$
- _____ • $\therefore \forall z \text{ witch}(x) \rightarrow \text{wood}(x)$
- $p \rightarrow q$
- $r \rightarrow q$
- -----• $p \rightarrow r$
 - Fallacy: Affirming the conclusion

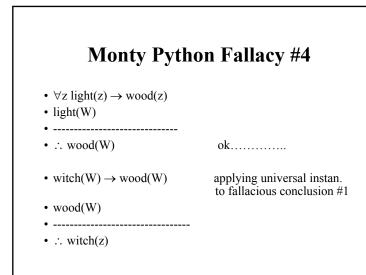
 $wood(x) \rightarrow can-build-bridge(x)$

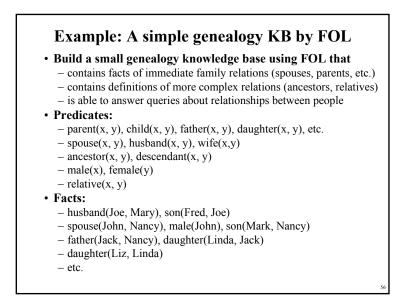
 \therefore can-build-bridge(x) \rightarrow wood(x)

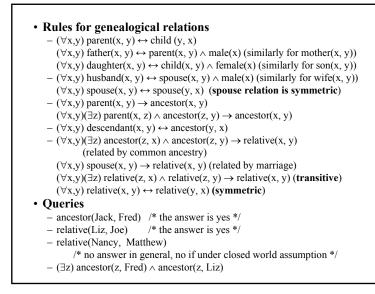
• B: Ah... but can you not also make bridges out of stone?

Monty Python Fallacy #3

- $\forall x \text{ wood}(x) \rightarrow \text{floats}(x)$
- $\forall x \text{ duck-weight } (x) \rightarrow \text{floats}(x)$
- _____
- $\therefore \forall x \text{ duck-weight}(x) \rightarrow \text{wood}(x)$
- $p \rightarrow q$
- $r \rightarrow q$
- \dots r \rightarrow p





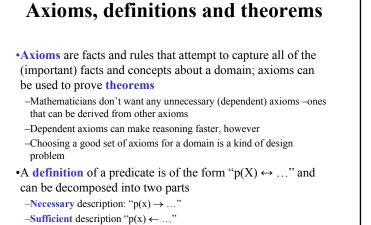


Axioms for Set Theory in FOL 1. The only sets are the empty set and those made by adjoining something to a set: $\forall s \text{ set}(s) \iff (\exists x, r \text{ Set}(r) \land s = \text{Adjoin}(s, r))$ 2. The empty set has no elements adjoined to it: ~ ∃x,s Adjoin(x,s)=EmptySet 3. Adjoining an element already in the set has no effect: $\forall x, s \text{ Member}(x, s) \leq s = Adjoin(x, s)$ 4. The only members of a set are the elements that were adjoined into it: $\forall x, s \text{ Member}(x, s) \iff \exists y, r (s = Adjoin(y, r) \land (x = y \lor Member(x, r)))$ 5. A set is a subset of another iff all of the 1st set's members are members of the 2nd: \forall s,r Subset(s,r) <=> (\forall x Member(x,s) => Member(x,r)) 6. Two sets are equal iff each is a subset of the other: \forall s,r (s=r) <=> (subset(s,r) ^ subset(r,s)) 7. Intersection $\forall x.s1.s2 \text{ member}(X.intersection(S1.S2)) \leq member(X.s1) \land member(X.s2)$ 8. Union $\exists x,s1,s2 \text{ member}(X,union(s1,s2)) \leq member(X,s1) \lor member(X,s2)$

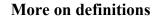
Semantics of FOL

- **Domain M:** the set of all objects in the world (of interest)
- Interpretation I: includes
 - Assign each constant to an object in M
 - Define each function of n arguments as a mapping $M^n \Longrightarrow M$
 - Define each predicate of n arguments as a mapping $M^n \Longrightarrow \{T, F\}$
 - Therefore, every ground predicate with any instantiation will have a truth value
 - In general there is an infinite number of interpretations because $\left| M \right|$ is infinite
- **Define logical connectives:** ~, ^, v, =>, <=> as in PL
- Define semantics of $(\forall x)$ and $(\exists x)$
 - $-(\forall x) P(x)$ is true iff P(x) is true under all interpretations
 - $-(\exists x) P(x)$ is true iff P(x) is true under some interpretation

- **Model:** an interpretation of a set of sentences such that every sentence is *True*
- A sentence is
 - -satisfiable if it is true under some interpretation
 - -valid if it is true under all possible interpretations
 - -inconsistent if there does not exist any interpretation under which the sentence is true
- Logical consequence: S |= X if all models of S are also models of X



-Some concepts don't have complete definitions (e.g., person(x))

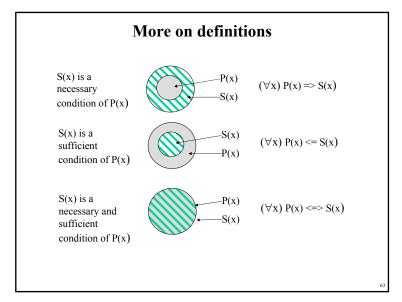


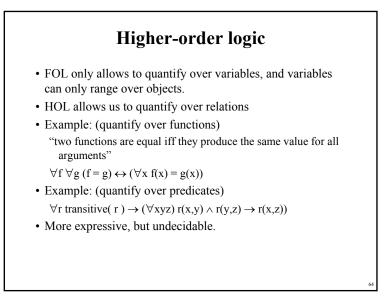
- Examples: define father(x, y) by parent(x, y) and male(x)
 - parent(x, y) is a necessary (but not sufficient) description of
 - father(x, y)
 - father(x, y) \rightarrow parent(x, y)
 - parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not necessary) description of father(x, y):

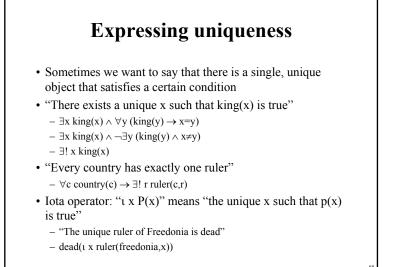
father(x, y) \leftarrow parent(x, y) $^{\text{nale}(x)}$ age(x, 35)

 parent(x, y) ^ male(x) is a necessary and sufficient description of father(x, y)

 $parent(x, y) \land male(x) \leftrightarrow father(x, y)$







Notational differences

• Different symbols for and, or, not, implies, ...

 $-\forall \exists \Rightarrow \Leftrightarrow \land \lor \neg \bullet \supset$ $-p \lor (q^{\land}r)$ $-p + (q^{\ast}r)$ - etc $\bullet \mathbf{Prolog}$

cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations (forall ?x (implies (and (furry ?x) (meows ?x) (has ?x claws)) (cat ?x)))

Logical Agents

Logical agents for the Wumpus World

Three (non-exclusive) agent architectures:

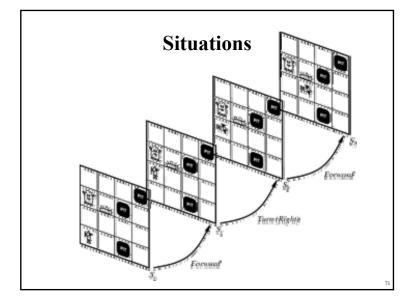
- -Reflex agents
 - Have rules that classify situations, specifying how to react to each possible situation
- -Model-based agents
 - Construct an internal model of their world
- -Goal-based agents
 - Form goals and try to achieve them

A simple reflex agent

- Rules to map percepts into observations:
 ∀b,g,u,c,t Percept([Stench, b, g, u, c], t) → Stench(t)
 ∀s,g,u,c,t Percept([s, Breeze, g, u, c], t) → Breeze(t)
 ∀s,b,u,c,t Percept([s, b, Glitter, u, c], t) → AtGold(t)
- Rules to select an action given observations: ∀t AtGold(t) → Action(Grab, t);
- Some difficulties:
 - Consider Climb. There is no percept that indicates the agent should climb out – position and holding gold are not part of the percept sequence
 - Loops the percept will be repeated when you return to a square, which should cause the same response (unless we maintain some internal model of the world)

Representing change

- Representing change in the world in logic can be tricky.
- One way is just to change the KB
 - Add and delete sentences from the KB to reflect changes
 - How do we remember the past, or reason about changes?
- Situation calculus is another way
- A situation is a snapshot of the world at some instant in time
- When the agent performs an action A in situation S1, the result is a new situation S2.



Situation calculus

- A situation is a snapshot of the world at an interval of time during which nothing changes
- Every true or false statement is made with respect to a particular situation.
 - Add situation variables to every predicate.
 - at(Agent,1,1) becomes at(Agent,1,1,s0): at(Agent,1,1) is true in situation (i.e., state) s0.
 - Alernatively, add a special 2nd-order predicate, holds(f,s), that means "f is true in situation s." E.g., holds(at(Agent,1,1),s0)
- Add a new function, result(a,s), that maps a situation s into a new situation as a result of performing action a. For example, result(forward, s) is a function that returns the successor state (situation) to s
- · Example: The action agent-walks-to-location-y could be represented by
 - $\begin{array}{l} (\forall x)(\forall y)(\forall s) \ (at(Agent,x,s) \land \neg onbox(s)) \rightarrow \\ at(Agent,y,result(walk(y),s)) \end{array}$

Deducing hidden properties

- From the perceptual information we obtain in situations, we can infer properties of locations
 ∀l,s at(Agent,l,s) ∧ Breeze(s) → Breezy(l)
 ∀l,s at(Agent,l,s) ∧ Stench(s) → Smelly(l)
- Neither Breezy nor Smelly need situation arguments because pits and Wumpuses do not move around

Representing change: The frame problem

Frame axioms: If property x doesn't change as a result of applying action a in state s, then it stays the same.

- $On (x, z, s) \land Clear (x, s) \rightarrow$ On (x, table, Result(Move(x, table), s)) \ $\neg On(x, z, Result (Move (x, table), s))$
- On (y, z, s) \land y \neq x \rightarrow On (y, z, Result (Move (x, table), s))
- The proliferation of frame axioms becomes very cumbersome in complex domains

Deducing hidden properties II

- We need to write some rules that relate various aspects of a single world state (as opposed to across states)
- There are two main kinds of such rules:
 - Causal rules reflect the assumed direction of causality in the world: (∀11,12,s) At(Wumpus,11,s) ∧ Adjacent(11,12) → Smelly(12) (∀ 11,12,s) At(Pit,11,s) ∧ Adjacent(11,12) → Breezy(12)
 Systems that reason with causal rules are called model-based reasoning systems
 - Diagnostic rules infer the presence of hidden properties directly from the percept-derived information. We have already seen two diagnostic rules:
 - $(\forall l,s) At(Agent,l,s) \land Breeze(s) \rightarrow Breezy(l)$ $(\forall l,s) At(Agent,l,s) \land Stench(s) \rightarrow Smelly(l)$

The frame problem II Successor-state axiom: General statement that characterizes every way in which a particular predicate can become true: Either it can be made true, or it can already be true and not be changed: On (x, table, Result(a,s)) ↔ [On (x, z, s) ∧ Clear (x, s) ∧ a = Move(x, table)] ∧ [On (x, table, s) ∧ a ≠ Move (x, z)] In complex worlds, where you want to reason about longer chains of action, even these types of axioms are too cumbersome Planning systems use special-purpose inference methods to reason

 Planning systems use special-purpose inference methods to reason about the expected state of the world at any point in time during a multi-step plan

Qualification problem

- How can you possibly characterize every single effect of an action, or every single exception that might occur?
- When I put my bread into the toaster, and push the button, it will become toasted after two minutes, unless...
 - The toaster is broken, or...
 - The power is out, or \ldots
 - I blow a fuse, or \ldots
 - A neutron bomb explodes nearby and fries all electrical components, or...
 - A meteor strikes the earth, and the world we know it ceases to exist, or \ldots

Ramification problem

Similarly, it's just about impossible to characterize every side effect of every action, at every possible level of detail.

When I put my bread into the toaster, and push the button, the bread will become toasted after two minutes, and...

- The crumbs that fall off the bread onto the bottom of the toaster over tray will also become toasted, and...
- Some of the aforementioned crumbs will become burnt, and...
- The outside molecules of the bread will become "toasted," and ...
- The inside molecules of the bread will remain more "breadlike," and...
- The toasting process will release a small amount of humidity into the air because of evaporation, and...
- The heating elements will become a tiny fraction more likely to burn out the next time I use the toaster, and \ldots
- The electricity meter in the house will move up slightly, and...

Knowledge engineering!

- Modeling the "right" conditions and the "right" effects at the "right" level of abstraction is very difficult
- Knowledge engineering (creating and maintaining knowledge bases for intelligent reasoning) is an entire field of investigation
- Many researchers hope that automated knowledge acquisition and machine learning tools can fill the gap:
 - Our intelligent systems should be able to **learn** about the conditions and effects, just like we do!
 - Our intelligent systems should be able to learn when to pay attention to, or reason about, certain aspects of processes, depending on the context!

Preferences among actions

- A problem with the Wumpus world knowledge base that we have built so far is that it is difficult to decide which action is best among a number of possibilities.
- For example, to decide between a forward and a grab, axioms describing when it is OK to move to a square would have to mention glitter.
- This is not modular!
- We can solve this problem by separating facts about actions from facts about goals. This way our agent can be reprogrammed just by asking it to achieve different goals.

Preferences among actions

- The first step is to describe the desirability of actions independent of each other.
- In doing this we will use a simple scale: actions can be Great, Good, Medium, Risky, or Deadly.
- Obviously, the agent should always do the best action it can find:

 $(\forall a,s) \operatorname{Great}(a,s) \rightarrow \operatorname{Action}(a,s)$

- $(\forall a,s) \operatorname{Good}(a,s) \land \neg(\exists b) \operatorname{Great}(b,s) \rightarrow \operatorname{Action}(a,s)$
- $(\forall a,s) \operatorname{Medium}(a,s) \land (\neg(\exists b) \operatorname{Great}(b,s) \lor \operatorname{Good}(b,s)) \rightarrow \operatorname{Action}(a,s)$

...

Preferences among actions

- We use this action quality scale in the following way.
- Until it finds the gold, the basic strategy for our agent is:
 - Great actions include picking up the gold when found and climbing out of the cave with the gold.
 - Good actions include moving to a square that's OK and hasn't been visited yet.
 - Medium actions include moving to a square that is OK and has already been visited.
 - Risky actions include moving to a square that is not known to be deadly or OK.
 - Deadly actions are moving into a square that is known to have a pit or a Wumpus.

Goal-based agents

- Once the gold is found, it is necessary to change strategies. So now we need a new set of action values.
- We could encode this as a rule:
 - (\forall s) Holding(Gold,s) \rightarrow GoalLocation([1,1]),s)
- We must now decide how the agent will work out a sequence of actions to accomplish the goal.
- Three possible approaches are:
 - Inference: good versus wasteful solutions
 - Search: make a problem with operators and set of states
 - Planning: to be discussed later

Coming up next:

- Logical inference
- Knowledge representation
- Planning