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Propositional and 
First-Order Logic

Chapter 7.4─7.8, 8.1─8.3, 8.5

Some material adopted from notes 
by Andreas Geyer-Schulz

and Chuck Dyer
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Overview

• Propositional logic (quick review)
• Problems with propositional logic
• First-order logic (review)

– Properties, relations, functions, quantifiers, …
– Terms, sentences, wffs, axioms, theories, proofs, …

• Extensions to first-order logic
• Logical agents

– Reflex agents
– Representing change: situation calculus, frame problem
– Preferences on actions
– Goal-based agents
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Propositional 
Logic: Review
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Propositional logic

• Logical constants: true, false 
• Propositional symbols: P, Q, S, ...  (atomic sentences)
• Wrapping parentheses: ( … )
• Sentences are combined by connectives: 
∧ ...and [conjunction]

∨ ...or [disjunction]

⇒...implies [implication / conditional]

⇔..is equivalent [biconditional]

¬ ...not [negation]
• Literal: atomic sentence or negated atomic sentence

– P, ¬ P
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Examples of PL sentences

• (P ∧ Q) → R 
“If it is hot and humid, then it is raining”

• Q → P 
“If it is humid, then it is hot”

• Q 
“It is humid.”

• A better way:
Ho = “It is hot”
Hu = “It is humid”
R = “It is raining”

6

Propositional logic (PL)
• A simple language useful for showing key ideas and definitions 
• User defines a set of propositional symbols, like P and Q. 
• User defines the semantics of each propositional symbol:

– P means “It is hot”
– Q means “It is humid”
– R means “It is raining”

• A sentence (well formed formula) is defined as follows: 
– A symbol is a sentence
– If S is a sentence, then ¬S is a sentence
– If S is a sentence, then (S) is a sentence
– If S and T are sentences, then (S ∨ T), (S ∧ T), (S → T), and (S ↔ T) are 

sentences
– A sentence results from a finite number of applications of the above rules

7

A BNF grammar of sentences in 
propositional logic 

S := <Sentence> ;

<Sentence> := <AtomicSentence> | <ComplexSentence> ;

<AtomicSentence> := "TRUE" | "FALSE" | 

"P" | "Q" | "S" ;

<ComplexSentence> := "(" <Sentence> ")" | 

<Sentence> <Connective> <Sentence> |

"NOT" <Sentence> ;

<Connective> := "AND" | "OR" | "IMPLIES" | 
"EQUIVALENT" ;
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Some terms

• The meaning or semantics of a sentence determines its 
interpretation. 

• Given the truth values of all symbols in a sentence, it 
can be “evaluated” to determine its truth value (True 
or False). 

• A model for a KB is a “possible world” (assignment of 
truth values to propositional symbols) in which each 
sentence in the KB is True. 
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More terms
• A valid sentence or tautology is a sentence that is 

True under all interpretations, no matter what the 
world is actually like or what the semantics is. 
Example: “It’s raining or it’s not raining.”

• An inconsistent sentence or contradiction is a 
sentence that is False under all interpretations. The 
world is never like what it describes, as in “It’s 
raining and it’s not raining.”

• P entails Q, written P |= Q, means that whenever P 
is True, so is Q. In other words, all models of P are 
also models of Q.
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Truth tables
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Truth tables II

The five logical connectives:

A complex sentence:
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Models of complex sentences
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Inference rules
• Logical inference is used to create new sentences 

that logically follow from a given set of predicate 
calculus sentences (KB).

• An inference rule is sound if every sentence X 
produced by an inference rule operating on a KB 
logically follows from the KB. (That is, the 
inference rule does not create any contradictions)

• An inference rule is complete if it is able to 
produce every expression that logically follows 
from (is entailed by) the KB. (Note the analogy to 
complete search algorithms.)
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Sound rules of inference
• Here are some examples of sound rules of inference

– A rule is sound if its conclusion is true whenever the premise is true

• Each can be shown to be sound using a truth table
RULE PREMISE CONCLUSION

Modus Ponens A, A → B B
And Introduction A, B A ∧ B
And Elimination A ∧ B A
Double Negation ¬¬A A
Unit Resolution A ∨ B, ¬B A
Resolution A ∨ B, ¬B ∨ C A ∨ C
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Soundness of modus ponens

√

√

√

√

OK?

TrueFalseFalse

TrueTrueFalse

FalseFalseTrue

TrueTrueTrue

A → BBA

16

Soundness of the 
resolution inference rule 
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Proving things
• A proof is a sequence of sentences, where each sentence is either a 

premise or a sentence derived from earlier sentences in the proof 
by one of the rules of inference. 

• The last sentence is the theorem (also called goal or query) that 
we want to prove.

• Example for the “weather problem” given above.
1 Hu Premise “It is humid”

2 Hu→Ho Premise “If it is humid, it is hot”

3 Ho Modus Ponens(1,2) “It is hot”

4 (Ho∧Hu)→R Premise “If it’s hot & humid, it’s raining”

5 Ho∧Hu And Introduction(1,3) “It is hot and humid”

6 R Modus Ponens(4,5) “It is raining”

18

Horn sentences

• A Horn sentence or Horn clause has the form:
P1 ∧ P2 ∧ P3 ... ∧ Pn  → Q

or alternatively
¬P1 ∨ ¬ P2 ∨ ¬ P3 ... ∨ ¬ Pn ∨ Q

where Ps and Q are non-negated atoms
• To get a proof for Horn sentences, apply Modus 

Ponens repeatedly until nothing can be done
• We will use the Horn clause form later

(P → Q)  = (¬P ∨ Q)

19

Entailment and derivation
• Entailment: KB |= Q

– Q is entailed by KB (a set of premises or assumptions) if and 
only if there is no logically possible world in which Q is false
while all the premises in KB are true. 

– Or, stated positively, Q is entailed by KB if and only if the 
conclusion is true in every logically possible world in which 
all the premises in KB  are true. 

• Derivation: KB |- Q
– We can derive Q from KB if there is a proof consisting of a 

sequence of valid inference steps starting from the premises in 
KB and resulting in Q

20

Two important properties for inference

Soundness: If KB |- Q then KB |= Q
– If Q is derived from a set of sentences KB using a given 

set of rules of inference, then Q is entailed by KB.
– Hence, inference produces only real entailments, or any 

sentence that follows deductively from the premises is 
valid.

Completeness: If KB |= Q then KB |- Q
– If Q is entailed by a set of sentences KB, then Q can be 

derived from KB using the rules of inference. 
– Hence, inference produces all entailments, or all valid 

sentences can be proved from the premises.
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Problems with
Propositional 

Logic

22

Propositional logic is a weak language

• Hard to identify “individuals” (e.g., Mary, 3)
• Can’t directly talk about properties of individuals or 

relations between individuals (e.g., “Bill is tall”)
• Generalizations, patterns, regularities can’t easily be 

represented (e.g., “all triangles have 3 sides”)
• First-Order Logic (abbreviated FOL or FOPC) is expressive 

enough to concisely represent this kind of information
FOL adds relations, variables, and quantifiers, e.g.,

•“Every elephant is gray”: ∀ x (elephant(x) → gray(x))
•“There is a white alligator”: ∃ x (alligator(X) ^ 
white(X))
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Example

• Consider the problem of representing the following 
information: 
– Every person is mortal. 
– Confucius is a person. 
– Confucius is mortal.

• How can these sentences be represented so that we 
can infer the third sentence from the first two? 

24

Example II
• In PL we have to create propositional symbols to stand for all or 

part of each sentence. For example, we might have: 
P = “person”; Q = “mortal”; R = “Confucius”

• so the above 3 sentences are represented as: 
P → Q; R → P;  R → Q 

• Although the third sentence is entailed by the first two, we needed 
an explicit symbol, R, to represent an individual, Confucius, who 
is a member of the classes “person” and “mortal”

• To represent other individuals we must introduce separate 
symbols for each one, with some way to represent the fact that all 
individuals who are “people” are also “mortal”
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The “Hunt the Wumpus” agent
• Some atomic propositions:

S12 = There is a stench in cell (1,2)
B34 = There is a breeze in cell (3,4)
W22 = The Wumpus is in cell (2,2)
V11 = We have visited cell (1,1)
OK11 = Cell (1,1) is safe.
etc

• Some rules:
(R1) ¬S11 →¬W11 ∧ ¬ W12 ∧ ¬ W21
(R2) ¬ S21 →¬W11 ∧ ¬ W21 ∧ ¬ W22 ∧ ¬ W31
(R3) ¬ S12 →¬W11 ∧ ¬ W12 ∧ ¬ W22 ∧ ¬ W13
(R4) S12 → W13 ∨ W12 ∨ W22 ∨ W11
Etc.

• Note that the lack of variables requires us to give 
similar rules for each cell
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After the third move

We can prove that 
the Wumpus is in 
(1,3) using the four 
rules given.

See R&N section 
7.5
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Proving W13
• Apply MP with ¬S11  and  R1: 

¬ W11 ∧ ¬ W12 ∧ ¬ W21 
• Apply And-Elimination to this, yielding 3 sentences: 

¬ W11, ¬ W12, ¬ W21 
• Apply MP to ~S21 and  R2, then apply And-elimination: 

¬ W22, ¬ W21, ¬ W31 
• Apply MP to S12 and  R4 to obtain: 

W13 ∨ W12 ∨ W22 ∨ W11
• Apply Unit resolution on  (W13 ∨ W12 ∨ W22 ∨ W11) and ¬W11: 

W13 ∨ W12 ∨ W22
• Apply Unit Resolution with (W13 ∨ W12 ∨ W22) and ¬W22:

W13 ∨ W12
• Apply UR with (W13 ∨ W12) and ¬W12:

W13
• QED
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Problems with the  propositional Wumpus hunter 

• Lack of variables prevents stating more general
rules
– We need a set of similar rules for each cell

• Change of the KB over time is difficult to represent
– Standard technique is to index facts with the time 

when they’re true
– This means we have a separate KB for every 

time point
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Propositional logic: Summary
• The process of deriving new sentences from old one is called inference.

– Sound inference processes derives true conclusions given true premises
– Complete inference processes derive all true conclusions from a set of premises

• A valid sentence is true in all worlds under all interpretations
• If an implication sentence can be shown to be valid, then—given its 

premise—its consequent can be derived
• Different logics make different commitments about what the world is made 

of and what kind of beliefs we can have regarding the facts
– Logics are useful for the commitments they do not make because lack of 

commitment gives the knowledge base engineer more freedom
• Propositional logic commits only to the existence of facts that may or may 

not be the case in the world being represented
– It has a simple syntax and simple semantics. It suffices to illustrate the process 

of inference
– Propositional logic quickly becomes impractical, even for very small worlds

30

First-Order 
Logic: Review

31

First-order logic
• First-order logic (FOL) models the world in terms of 

– Objects, which are things with individual identities
– Properties of objects that distinguish them from other objects
– Relations that hold among sets of objects
– Functions, which are a subset of relations where there is only 

one “value” for any given “input”
• Examples: 

– Objects: Students, lectures, companies, cars ... 
– Relations: Brother-of, bigger-than, outside, part-of, has-color, 

occurs-after, owns, visits, precedes, ... 
– Properties: blue, oval, even, large, ... 
– Functions: father-of, best-friend, second-half, one-more-than 

... 

32

User provides
• Constant symbols, which represent individuals in the world

– Mary
– 3
– Green

• Function symbols, which map individuals to individuals
– father-of(Mary) = John
– color-of(Sky) = Blue

• Predicate symbols, which map individuals to truth values
– greater(5,3)
– green(Grass) 
– color(Grass, Green)
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FOL Provides

• Variable symbols
– E.g., x, y, foo

• Connectives
– Same as in PL: not (¬), and (∧), or (∨), implies 

(→), if and only if (biconditional ↔)
• Quantifiers

– Universal ∀x or  (Ax)
– Existential ∃x or (Ex)

34

Sentences are built from terms and atoms
• A term (denoting a real-world individual) is a constant symbol, a 

variable symbol, or an n-place function of n terms. 
x and f(x1, ..., xn) are terms, where each xi is a term. 
A term with no variables is a ground term

• An atomic sentence (which has value true or false) is an n-place 
predicate of n terms

• A complex sentence is formed from atomic sentences connected 
by the logical connectives:
¬P, P∨Q, P∧Q, P→Q, P↔Q where P and Q are sentences

• A quantified sentence adds quantifiers ∀ and ∃
• A well-formed formula (wff) is a sentence containing no “free” 

variables. That is, all variables are “bound” by universal or 
existential quantifiers. 
(∀x)P(x,y) has x bound as a universally quantified variable, but y is free. 

35

A BNF for FOL
S := <Sentence> ;

<Sentence> := <AtomicSentence> | 

<Sentence> <Connective> <Sentence> |

<Quantifier> <Variable>,... <Sentence> |

"NOT" <Sentence> |

"(" <Sentence> ")"; 

<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |

<Term> "=" <Term>;

<Term> := <Function> "(" <Term>, ... ")" |

<Constant> |

<Variable>;

<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";

<Quantifier> := "EXISTS" | "FORALL" ;

<Constant> := "A" | "X1" | "John" | ... ;

<Variable> := "a" | "x" | "s" | ... ;

<Predicate> := "Before" | "HasColor" | "Raining" | ... ; 

<Function> := "Mother" | "LeftLegOf" | ... ;

36

Quantifiers
• Universal quantification

– (∀x)P(x) means that P holds for all values of x 
in the domain associated with that variable

– E.g., (∀x) dolphin(x) → mammal(x)
• Existential quantification

– (∃ x)P(x) means that P holds for some value of x 
in the domain associated with that variable

– E.g., (∃ x) mammal(x) ∧ lays-eggs(x)
– Permits one to make a statement about some 

object without naming it
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Quantifiers
• Universal quantifiers are often used with “implies” to form “rules”:

(∀x) student(x) → smart(x) means “All students are smart”

• Universal quantification is rarely used to make blanket statements 
about every individual in the world: 
(∀x)student(x)∧smart(x) means “Everyone in the world is a student and is smart”

• Existential quantifiers are usually used with “and” to specify a list of 
properties about an individual:
(∃x) student(x) ∧ smart(x) means “There is a student who is smart”

• A common mistake is to represent this English sentence as the FOL 
sentence:
(∃x) student(x) → smart(x) 
– But what happens when there is a person who is not a student?

38

Quantifier Scope
• FOL sentences have structure, like programs
• In particular, the variables in a sentence have a scope
• For example, suppose we want to say 

– “everyone who is alive loves someone”
– (∀x) alive(x) → (∃y) loves(x,y) 

• Here’s how we soce the variables

(∀x) alive(x) → (∃y) loves(x,y)

Scope of x
Scope of y

39

Quantifier Scope
• Switching the order of universal quantifiers does not

change the meaning:
– (∀x)(∀y)P(x,y) ↔ (∀y)(∀x) P(x,y)
– “Dogs hate cats”.

• Similarly, you can switch the order of existential 
quantifiers:
– (∃x)(∃y)P(x,y) ↔ (∃y)(∃x) P(x,y) 
– “A cat killed a dog”

• Switching the order of universals and existentials does
change meaning: 
– Everyone likes someone: (∀x)(∃y) likes(x,y) 
– Someone is liked by everyone: (∃y)(∀x) likes(x,y)

40

Connections between All and Exists
• We can relate sentences involving ∀ and ∃ using De 

Morgan’s laws:
1. (∀x) ¬P(x) ↔ ¬(∃x) P(x)
2. ¬(∀x) P ↔ (∃x) ¬P(x)
3. (∀x) P(x) ↔ ¬ (∃x) ¬P(x)
4. (∃x) P(x) ↔ ¬(∀x) ¬P(x)

• Examples
1. All dogs don’t like cats ↔ No dog’s like cats
2. Not all dogs dance ↔ There is a dog that doesn’t 

dance.
3. All dogs sleep ↔ There is no dog that doesn’t sleep
4. There is a dog that talks ↔ Not all dogs can’t talk
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Quantified inference rules

• Universal instantiation
–∀x P(x) ∴ P(A)

• Universal generalization
– P(A) ∧ P(B) … ∴ ∀x P(x)

• Existential instantiation
–∃x P(x) ∴P(F)     ← skolem constant F

• Existential generalization
– P(A) ∴ ∃x P(x)

42

Universal instantiation
(a.k.a. universal elimination)

• If (∀x) P(x) is true, then P(C) is true, where C is 
any constant in the domain of x

• Example: 
(∀x) eats(Ziggy, x) ⇒ eats(Ziggy, IceCream)

• The variable symbol can be replaced by any ground 
term, i.e., any constant symbol or function symbol 
applied to ground terms only

43

Existential instantiation
(a.k.a. existential elimination)

• From (∃x) P(x) infer P(c)
• Example:

– (∃x) eats(Ziggy, x) → eats(Ziggy, Stuff)
• Note that the variable is replaced by a brand-new constant

not occurring in this or any other sentence in the KB
• Also known as skolemization; constant is a skolem

constant
• In other words, we don’t want to accidentally draw other 

inferences about it by introducing the constant 
• Convenient to use this to reason about the unknown object, 

rather than constantly manipulating the existential quantifier

44

Existential generalization
(a.k.a. existential introduction)

• If P(c) is true, then (∃x) P(x) is inferred. 
• Example

eats(Ziggy, IceCream) ⇒ (∃x) eats(Ziggy, x)
• All instances of the given constant symbol are 

replaced by the new variable symbol
• Note that the variable symbol cannot already exist 

anywhere in the expression
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Translating English to FOL
• Every gardener likes the sun.
∀x gardener(x) → likes(x,Sun) 

• You can fool some of the people all of the time.
∃x ∀t  person(x) ∧time(t) → can-fool(x,t)

• You can fool all of the people some of the time. 
(two ways)
∀x ∃t (person(x) → time(t) ∧can-fool(x,t))
∀x (person(x) → ∃t (time(t) ∧can-fool(x,t))

• All purple mushrooms are poisonous.
∀x (mushroom(x) ∧ purple(x)) → poisonous(x) 

46

Translating English to FOL
• No purple mushroom is poisonous. (two ways)

¬∃x purple(x) ∧ mushroom(x) ∧ poisonous(x) 
∀x  (mushroom(x) ∧ purple(x)) →¬poisonous(x) 

• There are exactly two purple mushrooms.
∃x ∃y mushroom(x) ∧ purple(x) ∧ mushroom(y) ∧ purple(y) ^ 
¬(x=y) ∧ ∀z (mushroom(z) ∧ purple(z)) → ((x=z) ∨ (y=z)) 

• Bush is not tall.
¬tall(Bush) 

• X is above Y iff X is on directly on top of Y or there 
is a pile of one or more other objects directly on top 
of one another starting with X and ending with Y.
∀x ∀y above(x,y) ↔ (on(x,y) ∨ ∃z (on(x,z) ∧ above(z,y)))

47

Logic and People

• People can easily be confused by logic
• And are often suspicious of it, or give it too much weight

48

Monty Python example (Russell & Norvig)

FIRST VILLAGER: We have found a witch. May we burn her?
ALL: A witch! Burn her!
BEDEVERE: Why do you think she is a witch?
SECOND VILLAGER: She turned me into a newt.
B: A newt?
V2 (after looking at himself for some time): I got better.
ALL: Burn her anyway.
B: Quiet! Quiet! There are ways of telling whether she is a witch.
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Monty Python cont.

B: Tell me… what do you do with witches?
ALL: Burn them!
B: And what do you burn, apart from witches?
V4: …wood?
B: So why do witches burn?
V2 (pianissimo): because they’re made of wood?
B: Good.
ALL: I see. Yes, of course. 50

B: So how can we tell if she is made 
of wood?

V1: Make a bridge out of her.
B: Ah… but can you not also make 

bridges out of stone?
ALL: Yes, of course… um… er…
B: Does wood sink in water?
ALL: No, no, it floats. Throw her

in the pond.
B: Wait. Wait… tell me, what also 

floats on water?
ALL: Bread? No, no no. Apples… 

gravy… very small rocks…
B: No, no, no,

51

KING ARTHUR: A duck!
(They all turn and look at Arthur. Bedevere looks up, very impressed.)
B: Exactly. So… logically…
V1 (beginning to pick up the thread): If she… weighs the same as a 

duck… she’s made of wood.
B: And therefore?
ALL: A witch!

52

Monty Python Fallacy #1

• ∀x witch(x) → burns(x)
• ∀x wood(x) → burns(x)
• -------------------------------
• ∴ ∀z witch(x) → wood(x)

• p → q
• r → q
• ---------
• p → r                             Fallacy: Affirming the conclusion
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Monty Python Near-Fallacy #2

wood(x) → can-build-bridge(x)
-----------------------------------------
∴ can-build-bridge(x) → wood(x)

• B: Ah… but can you not also make bridges out of stone?

54

Monty Python Fallacy #3

• ∀x wood(x) → floats(x)
• ∀x duck-weight (x) → floats(x)
• -------------------------------
• ∴ ∀x duck-weight(x) → wood(x)

• p → q
• r → q
• -----------
• ∴ r → p

55

Monty Python Fallacy #4

• ∀z light(z) → wood(z)
• light(W)
• ------------------------------
• ∴ wood(W)                                 ok…………..

• witch(W) → wood(W)               applying universal instan.
to fallacious conclusion #1

• wood(W)
• ---------------------------------
• ∴ witch(z)

56

Example: A simple genealogy KB by FOL
• Build a small genealogy knowledge base using FOL that

– contains facts of immediate family relations (spouses, parents, etc.)
– contains definitions of more complex relations (ancestors, relatives)
– is able to answer queries about relationships between people

• Predicates:
– parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
– spouse(x, y), husband(x, y), wife(x,y)
– ancestor(x, y), descendant(x, y)
– male(x), female(y)
– relative(x, y)

• Facts:
– husband(Joe, Mary), son(Fred, Joe)
– spouse(John, Nancy), male(John), son(Mark, Nancy)
– father(Jack, Nancy), daughter(Linda, Jack)
– daughter(Liz, Linda)
– etc.
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• Rules for genealogical relations
– (∀x,y) parent(x, y) ↔ child (y, x)

(∀x,y) father(x, y) ↔ parent(x, y) ∧ male(x) (similarly for mother(x, y))
(∀x,y) daughter(x, y) ↔ child(x, y) ∧ female(x) (similarly for son(x, y))

– (∀x,y) husband(x, y) ↔ spouse(x, y) ∧ male(x) (similarly for wife(x, y))
(∀x,y) spouse(x, y) ↔ spouse(y, x)  (spouse relation is symmetric)

– (∀x,y) parent(x, y) → ancestor(x, y) 
(∀x,y)(∃z) parent(x, z) ∧ ancestor(z, y) → ancestor(x, y) 

– (∀x,y) descendant(x, y) ↔ ancestor(y, x) 
– (∀x,y)(∃z) ancestor(z, x) ∧ ancestor(z, y) → relative(x, y) 

(related by common ancestry)
(∀x,y) spouse(x, y) → relative(x, y) (related by marriage)
(∀x,y)(∃z) relative(z, x) ∧ relative(z, y) → relative(x, y) (transitive)
(∀x,y) relative(x, y) ↔ relative(y, x) (symmetric)

• Queries
– ancestor(Jack, Fred)   /* the answer is yes */
– relative(Liz, Joe)        /* the answer is yes */
– relative(Nancy,  Matthew)   

/* no answer in general, no if under closed world assumption */
– (∃z) ancestor(z, Fred) ∧ ancestor(z, Liz)

58

Axioms for Set Theory in FOL
1. The only sets are the empty set and those made by adjoining something to a set: 

∀s set(s) <=> (s=EmptySet) v (∃x,r Set(r) ^ s=Adjoin(s,r))
2. The empty set has no elements adjoined to it: 

~ ∃x,s Adjoin(x,s)=EmptySet
3. Adjoining an element already in the set has no effect: 

∀x,s Member(x,s) <=> s=Adjoin(x,s)
4. The only members of a set are the elements that were adjoined into it: 

∀x,s Member(x,s) <=>  ∃y,r (s=Adjoin(y,r) ^ (x=y ∨ Member(x,r)))
5. A set is a subset of another iff all of the 1st set’s members are members of the 2nd:

∀s,r Subset(s,r) <=> (∀x Member(x,s) => Member(x,r))
6. Two sets are equal iff each is a subset of the other: 

∀s,r (s=r) <=> (subset(s,r) ^ subset(r,s))
7. Intersection 

∀x,s1,s2 member(X,intersection(S1,S2)) <=> member(X,s1) ^ member(X,s2)
8. Union 

∃x,s1,s2 member(X,union(s1,s2)) <=> member(X,s1) ∨ member(X,s2)

59

Semantics of FOL
• Domain M: the set of all objects in the world (of interest)
• Interpretation I: includes

– Assign each constant to an object in M
– Define each function of n arguments as a mapping Mn => M
– Define each predicate of n arguments as a mapping Mn => {T, F}
– Therefore, every ground predicate with any instantiation will have a 

truth value
– In general there is an infinite number of interpretations because |M| is 

infinite
• Define logical connectives:  ~, ^, v, =>, <=> as in PL
• Define semantics of (∀x) and (∃x)

– (∀x) P(x) is true iff P(x) is true under all interpretations 
– (∃x) P(x) is true iff P(x) is true under some interpretation 

60

• Model: an interpretation of a set of sentences 
such that every sentence is True

• A sentence is
–satisfiable if it is true under some interpretation
–valid if it is true under all possible interpretations
– inconsistent if there does not exist any 

interpretation under which the sentence is true
• Logical consequence: S |= X if all models of S 

are also 
models of X
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Axioms, definitions and theorems

•Axioms are facts and rules that attempt to capture all of the 
(important) facts and concepts about a domain; axioms can 
be used to prove theorems
–Mathematicians don’t want any unnecessary (dependent) axioms –ones 
that can be derived from other axioms

–Dependent axioms can make reasoning faster, however
–Choosing a good set of axioms for a domain is a kind of design 
problem

•A definition of a predicate is of the form “p(X) ↔ …” and 
can be decomposed into two parts
–Necessary description: “p(x) → …” 
–Sufficient description “p(x) ← …”
–Some concepts don’t have complete definitions (e.g., person(x))

62

More on definitions

• Examples: define father(x, y) by parent(x, y) and 
male(x)
– parent(x, y) is a necessary (but not sufficient) description 

of 
father(x, y)
• father(x, y) → parent(x, y)

– parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not 
necessary) description of father(x, y):

father(x, y) ← parent(x, y) ^ male(x) ^ age(x, 35) 
– parent(x, y) ^ male(x) is a necessary and sufficient

description of father(x, y) 
parent(x, y) ^ male(x) ↔ father(x, y)
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More on definitions

P(x)

S(x)

S(x) is a 
necessary 
condition of P(x)

(∀x) P(x) => S(x)

S(x)

P(x)

S(x) is a 
sufficient 
condition of P(x)

(∀x) P(x) <= S(x)

P(x)

S(x)

S(x) is a 
necessary and 
sufficient 
condition of P(x)

(∀x) P(x) <=> S(x)
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Higher-order logic

• FOL only allows to quantify over variables, and variables 
can only range over objects. 

• HOL allows us to quantify over relations
• Example: (quantify over functions)

“two functions are equal iff they produce the same value for all
arguments”

∀f ∀g (f = g) ↔ (∀x f(x) = g(x))
• Example: (quantify over predicates)

∀r transitive( r ) → (∀xyz) r(x,y) ∧ r(y,z) → r(x,z)) 
• More expressive, but undecidable. 
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Expressing uniqueness

• Sometimes we want to say that there is a single, unique 
object that satisfies a certain condition

• “There exists a unique x such that king(x) is true”
– ∃x king(x) ∧ ∀y (king(y) → x=y)
– ∃x king(x) ∧ ¬∃y (king(y) ∧ x≠y)
– ∃! x king(x) 

• “Every country has exactly one ruler”
– ∀c country(c) → ∃! r ruler(c,r) 

• Iota operator: “ι x P(x)” means “the unique x such that p(x) 
is true”
– “The unique ruler of Freedonia is dead”
– dead(ι x ruler(freedonia,x))

66

Notational differences
• Different symbols for and, or, not, implies, ...

– ∀ ∃ ⇒ ⇔ ∧ ∨ ¬ • ⊃
– p v (q ^ r) 
– p + (q * r)
– etc

• Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations
(forall ?x (implies (and (furry ?x) 

(meows ?x) 
(has ?x claws))

(cat ?x)))

67

Logical Agents

68

Logical agents for the Wumpus World

Three (non-exclusive) agent architectures:
– Reflex agents

• Have rules that classify situations, specifying how to 
react to each possible situation 

– Model-based agents
• Construct an internal model of their world 

– Goal-based agents
• Form goals and try to achieve them
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A simple reflex agent
• Rules to map percepts into observations:

∀b,g,u,c,t Percept([Stench, b, g, u, c], t) → Stench(t)
∀s,g,u,c,t Percept([s, Breeze, g, u, c], t) → Breeze(t)
∀s,b,u,c,t Percept([s, b, Glitter, u, c], t) → AtGold(t)

• Rules to select an action given observations:
∀t AtGold(t) → Action(Grab, t);

• Some difficulties: 
– Consider Climb. There is no percept that indicates the agent should 

climb out – position and holding gold are not part of the percept 
sequence

– Loops – the percept will be repeated when you return to a square, 
which should cause the same response (unless we maintain some 
internal model of the world)
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Representing change
• Representing change in the world in logic can be 

tricky.
• One way is just to change the KB

– Add and delete sentences from the KB to reflect changes
– How do we remember the past, or reason about changes?

• Situation calculus is another way
• A situation is a snapshot of the world at some 

instant in time
• When the agent performs an action A                    

in situation S1, the result is a new                
situation S2.

71

Situations

72

Situation calculus
• A situation is a snapshot of the world at an interval of time during 

which nothing changes 
• Every true or false statement is made with respect to a particular 

situation. 
– Add situation variables to every predicate.
– at(Agent,1,1) becomes at(Agent,1,1,s0): at(Agent,1,1) is true in 

situation (i.e., state) s0.
– Alernatively, add a special 2nd-order predicate, holds(f,s), that means 

“f is true in situation s.” E.g., holds(at(Agent,1,1),s0) 
• Add a new function, result(a,s), that maps a situation s into a new 

situation as a result of performing action a. For example, result(forward, 
s) is a function that returns the successor state (situation) to s 

• Example: The action agent-walks-to-location-y could be represented by
– (∀x)(∀y)(∀s) (at(Agent,x,s) ∧ ¬onbox(s)) →

at(Agent,y,result(walk(y),s)) 
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Deducing hidden properties

• From the perceptual information we obtain in 
situations, we can infer properties of locations
∀l,s at(Agent,l,s) ∧ Breeze(s) → Breezy(l) 
∀l,s at(Agent,l,s) ∧ Stench(s) → Smelly(l) 

• Neither Breezy nor Smelly need situation 
arguments because pits and Wumpuses do not 
move around
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Deducing hidden properties II

• We need to write some rules that relate various aspects of a 
single world state (as opposed to across states)

• There are two main kinds of such rules: 
– Causal rules reflect the assumed direction of causality in the world: 

(∀l1,l2,s) At(Wumpus,l1,s) ∧ Adjacent(l1,l2) → Smelly(l2) 
(∀ l1,l2,s) At(Pit,l1,s) ∧ Adjacent(l1,l2) → Breezy(l2) 

Systems that reason with causal rules are called model-based                  
reasoning systems

– Diagnostic rules infer the presence of hidden properties directly 
from the percept-derived information. We have already seen two 
diagnostic rules:

(∀ l,s) At(Agent,l,s) ∧ Breeze(s) → Breezy(l) 
(∀ l,s) At(Agent,l,s) ∧ Stench(s) → Smelly(l) 
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Representing change: The frame problem

Frame axioms: If property x doesn’t change as a 
result of applying action a in state s, then it stays the 
same.
– On (x, z, s) ∧ Clear (x, s) →

On (x, table, Result(Move(x, table), s)) ∧
¬On(x, z, Result (Move (x, table), s))

– On (y, z, s) ∧ y≠ x → On (y, z, Result (Move (x, table), s))
– The proliferation of frame axioms becomes very 

cumbersome in complex domains
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The frame problem II
• Successor-state axiom: General statement that 

characterizes every way in which a particular predicate can 
become true:
– Either it can be made true, or it can already be true and not be 

changed:
– On (x, table, Result(a,s)) ↔

[On (x, z, s) ∧ Clear (x, s) ∧ a = Move(x, table)] ∧
[On (x, table, s) ∧ a ≠ Move (x, z)]

• In complex worlds, where you want to reason about longer 
chains of action, even these types of axioms are too 
cumbersome
– Planning systems use special-purpose inference methods to reason 

about the expected state of the world at any point in time during a 
multi-step plan
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Qualification problem

• How can you possibly characterize every
single effect of an action, or every single
exception that might occur?

• When I put my bread into the toaster, and push the 
button, it will become toasted after two minutes, 
unless…
– The toaster is broken, or…
– The power is out, or…
– I blow a fuse, or…
– A neutron bomb explodes nearby and fries all electrical components, 

or…
– A meteor strikes the earth, and the world we know it ceases to exist, 

or…
78

Ramification problem
Similarly, it’s just about impossible to characterize every
side effect of every action, at every possible level of detail.

When I put my bread into the toaster, and push the button, the bread will 
become toasted after two minutes, and…

– The crumbs that fall off the bread onto the bottom of the toaster over tray will 
also become toasted, and…

– Some of the aforementioned crumbs will become burnt, and…
– The outside molecules of the bread will become “toasted,” and…
– The inside molecules of the bread will remain more “breadlike,” and…
– The toasting process will release a small amount of humidity into the air 

because of evaporation, and…
– The heating elements will become a tiny fraction more likely to burn out the 

next time I use the toaster, and…
– The electricity meter in the house will move up slightly, and…

79

Knowledge engineering!
• Modeling the “right” conditions and the “right” effects at 

the “right” level of abstraction is very difficult
• Knowledge engineering (creating and maintaining 

knowledge bases for intelligent reasoning) is an entire field 
of investigation

• Many researchers hope that automated knowledge 
acquisition and machine learning tools can fill the gap:
– Our intelligent systems should be able to learn about the conditions 

and effects, just like we do!
– Our intelligent systems should be able to learn when to pay attention 

to, or reason about, certain aspects of processes, depending on the 
context!
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Preferences among actions

• A problem with the Wumpus world knowledge base that we 
have built so far is that it is difficult to decide which action
is best among a number of possibilities. 

• For example, to decide between a forward and a grab, 
axioms describing when it is OK to move to a square would 
have to mention glitter. 

• This is not modular! 
• We can solve this problem by separating facts about 

actions from facts about goals. This way our agent can be 
reprogrammed just by asking it to achieve different 
goals. 



21

81

Preferences among actions

• The first step is to describe the desirability of actions 
independent of each other. 

• In doing this we will use a simple scale: actions can be 
Great, Good, Medium, Risky, or Deadly. 

• Obviously, the agent should always do the best action it can 
find: 
(∀a,s) Great(a,s) → Action(a,s) 
(∀a,s) Good(a,s) ∧ ¬(∃b) Great(b,s)  → Action(a,s) 
(∀a,s) Medium(a,s) ∧ (¬(∃b) Great(b,s) ∨ Good(b,s)) → Action(a,s) 

... 
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Preferences among actions
• We use this action quality scale in the following way. 
• Until it finds the gold, the basic strategy for our agent is: 

– Great actions include picking up the gold when found and climbing 
out of the cave with the gold. 

– Good actions include moving to a square that’s OK and hasn't been 
visited yet. 

– Medium actions include moving to a square that is OK and has 
already been visited. 

– Risky actions include moving to a square that is not known to be
deadly or OK. 

– Deadly actions are moving into a square that is known to have a pit 
or a Wumpus. 
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Goal-based agents
• Once the gold is found, it is necessary to change strategies.  

So now we need a new set of action values. 
• We could encode this as a rule: 

– (∀s) Holding(Gold,s) → GoalLocation([1,1]),s)

• We must now decide how the agent will work out a 
sequence of actions to accomplish the goal. 

• Three possible approaches are:
– Inference: good versus wasteful solutions
– Search: make a problem with operators and set of states
– Planning: to be discussed later
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Coming up next:

• Logical inference
• Knowledge representation
• Planning


