
C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Basic Ray Tracing

Some slides courtesy of Steven Marschner

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Announcements

• Hw3 / Hw 4 out tonight
(Oct 31)

• Ray tracing proj out
tonight

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Objectives
•  Learn the basic ray tracer

– When to use it
– How to do it in OpenGL
– What are these techniques

•  Resources:
– http://www.siggraph.org/education/

materials/HyperGraph/raytrace/
rtrace0.htm

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

High-level idea
• Find the color of each pixel on

the view window.
• E.g., if our image resolution is

640x480, we’d break up the
view window into a grid of 640
squares across and 400
square down. Ray tracer is to
assign colors to these points.

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

•  Tracing rays from the light source to
the eye. Lots of rays are wasted
because they never reach the eye.

•  We trace a new ray from each ray-
object intersection directly towards the
light source.

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html#glas90

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray tracing idea

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray tracing algorithm

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Generate eye rays

• Use window analogy
directly

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Generate eye rays -
orthographic

•  Positioning the view rectangle
–  Establish three vectors to be camera basis: u, v, w
–  View rectangle is in u-v plane, specified by l, r, t, b

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Generating eye rays -
perspective

•  Compute s in the same way; just
substract dw
–  Coordinates of s are (u, v, -d)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Pixel-to-image mapping

•  One last detail: (u, v) coords of a pixel

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray intersection

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray: a half line
•  Standard representation: point p and

direction d

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray-sphere intersection:
algebraic

•  Condition I: point is on ray

•  Condition 2: point is on sphere
–  Assume unit sphere:

•  Substitute

–  This is a quadratic equation in t

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray-sphere intersection:
algebraic

•  Solution for t by quadratic formula:
–  Simpler from holds when d is a unit vector
–  But we won’t assume this in practice
–  I will use the unit-vector form to make the

geometric interpolation

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray-sphere intersection:
geometric

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray-box intersection

•  Could intersect with 6 faces
individually

•  Better way: box is the intersection of 3
slabs

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray-slab intersection

•  2D example
•  3D is the same!

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Intersection intersection

•  Each intersection is an interval
•  Want last entry point and first exist

point

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray-triangle intersection

•  Condition I: point is on ray
–  R(t) = p + t d

•  Condition 2: point is on plane
–  (x-a) . n = 0

•  Condition 3: point is on the inside of
all three edges

•  First solve 1 & 2 (ray-plane
intersection)
–  Substitute and solve for t:

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray-triangle intersection

•  In plane, triangle is the intersection of
3 half spaces

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Inside-edge test

•  Need outside vs. inside
•  Reduce to clockwise vs.

counterclockwise
–  Vector of edge to vector to x

•  User cross product to decide

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray-triangle intersection

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Image so far

•  With eye ray generation and sphere
intersection

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Intersection against many
shapes

•  The basic idea is

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Image so far

•  With eye ray generation and scene
intersection

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Shading

•  2D example
•  3D is the same!

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Shading

•  Compute light reflected toward camera
•  Inputs:

–  Eye direction
–  Light direction (for each of many lights)
–  Surface normal
–  Surface parameters (color, shininess,…)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Diffuse reflection

•  Light is scattered uniformly in all
directions
–  The surface color is the same for all viewing directions

•  Lambert’s cosine law

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Lambertian shading

•  Shading independent of view direction

•  Produce matte appearance

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Diffuse shading

•  Image so far

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Shadows

•  Surface is only illuminated if nothing
blocks its view of the light

•  With ray tracing it is easy to check
–  Just intersect a ray with the scene

•  Image so far

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Shadow rounding errors

•  Don’t fall victim to one of the classic
blunders

•  What is going on?
–  Hint: at what t does the shadow ray

intersect the surface you’re shading

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Shadow rounding errors

•  Solution shadow rays start a tiny
distance from the surface

•  Do this by moving the start point, or
by limiting the t range

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Multiple lights
•  Important to fill in black shadows
•  Just loop over lights add contributions
•  Ambient shading

–  Black shadows are not really right
–  One solution: dim light at camera
–  Alternative: add a constant “ambient” color

to the shading…

•  Image so far

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Specular shading (Blinn-
Phong)

•  Intensity depends on view direction
–  Bright near mirror configuration

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Diffuse reflection

•  Close to mirror ! half vector near
normal
–  Measure “near” by dot product of unit

vectors

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Phong model - plots

•  Increasing n narrows the lobe

•  Specular shading

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Diffuse + Phong shading

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ambient shading

•  Shading that does not depend on
anything
–  Add constant color to account for disregarded

illumination and fill in black shadows

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Putting it together

•  Usually include ambient, diffuse,
Phong in one model

•  The final result is the sum over many
lights

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Mirror reflection

•  Consider perfectly shiny surface
–  There is not a highlight
–  Instead there’s a reflection of other objects

•  Can render this using recursive ray
tracing
–  To find out mirror reflection color, ask what

color is seen from surface point in reflection
direction

•  Already computing reflection direction for Phong…

–  “Glazed” material has mirror reflection and
diffuse

–  L = La + Ld + Lm
–  Where Lm is evaluated by tracing a new ray

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Mirror reflection
•  Intensity depends on view direction

–  Reflects incident light from mirror direction

•  Image so far (diffuse + mirror reflection –
glazed)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Ray tracer architecture 101

•  You want a class called ray
–  Point and direction; evaluate (t)
–  Possible: tMin, tMax

•  Some things can be intersected with
rays
–  Individual surfaces
–  Groups of surfaces (acceleration goes here)
–  The whole scene
–  Make these all subclasses of surface
–  Limit the range of valid t values (e.g.,

shadow rays)

•  Once you have the visible intersection,
compute the color
–  may want to separate shading code from

geometry
–  Separate class: material (each surface

holds a reference to one)
–  Its job is to compute the color

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Raytracing

Architectural practicalities

•  Return values
–  Surface intersection tends to want to return

multiple values
•  T, surface, normal vector; maybe surface point

–  Typical solution: an intersection record
•  A class with fields for all these things
•  Keep track of the intersection record for the closest

intersection
•  Be careful of accidental aliasing

•  Efficiency
–  What objects are created for every ray? Try

to find a place for them where you can
reuse them.

–  Shadow rays can be cheaper (any
intersection will do, do not need closest)

–  But, “first get it right, then make it fast”

