COMPUTER GRAPHICS

Basic Ray Tracing

Some slides courtesy of Steven Marschner

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Announcements

e HW3 / Hw 4 out tonight
(Oct 31)

e Ray tracing proj out
tonight

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Objectives
e Learn the basic ray tracer
- When to use it
- How to do it in OpenGL
- What are these techniques

e Resources:

- http://www.siggraph.org/education/
materials/HyperGraph/raytrace/
rtrace0.htm

CMSC 435 / 634 August 2013 Raytracing

High-level idea

e Find the color of each pixel on
the view window.

e E.g., if our image resolution is
640x480, we'd break up the
view window into a grid of 640
squares across and 400
square down. Ray tracer is to
assign colors to these points.

<

eye

view window
world

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

e Tracing rays from the light source to
the eye. Lots of rays are wasted
because they never reach the eye.

¥ object

e We trace a new ray from each ray-
object intersection directly towards the

light source.
light

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html#glas90

CMSC 435 / 634 August 2013 Raytracing

COMPUTER

GRAPHICS

Ray tracing idea

viewer (eye)

<

light source

c
E
>
o
(=g
?)
>

visible point

objects
in scene

CMSC 435 / 634 August 2013

Raytracing

COMPUTER GRAPHICS

Ray tracing algorithm

light source

viewer (eye)

<

for each pixel { visible point

compute viewing ray

intersect ray with scene objects
compute illumination at visible point in scene
put result into image

) —

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Generate eye rays

e Use window analogy
directly

viewpoint view plane

\. - [)IXL"

position

_ viewing ray

~

view rect
pixel =/
position - viewing ray

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Generate eye rays -
orthographic

e Positioning the view rectangle

- Establish three vectors to be camera basis: u, v, w
- View rectangle is in u-v plane, specified by I, r, t, b

— NOW ray generation X
is easy:
S =e+uu-+ovv
p=s;d=—w
r(t) =p+td

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Generating eye rays -
perspective

e Compute s in the same way; just
substract dw

— Coordinates of s are (u, v, -d)

s=e+uu-+vv—dw
p=e d=s—e
r(t) =p+td

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Pixel-to-image mapping

e One last detail: (u, v) coords of a pixel

v=t
J j=25
Qo2| © © 6.2
o) o o :
©.1)
o o o o : v=>b
0o (o] ol (30 ~ &~
j==5 . Il
3
N

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Ray intersection

CMSC 435 / 634 August 2013 Raytracing

Ray: a half line

e Standard representation: point p and
direction d

r(t) =p+td
— this is a parametric equation for the line
— lets us directly generate the points on the line

— if we restrict to t > 0 then we have a ray
— note replacing d with ad doesn’t change ray (a > 0)

\
| S .
T A £=3
) \‘./dyﬁ =2
—===""" P t=1

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Ray-sphere intersection:
algebraic

e Condition I: point is on ray
r(t) =p+td

e Condition 2: point is on sphere
— Assume unit sphere:

x| =1 & Ix[I* =1
f(x)=x-x—1=0

e Substitute
(p+td)-(p+td)—1=0
— This is a quadratic equation in t

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Ray-sphere intersection:
algebraic

e Solution for t by quadratic formula:
- Simpler from holds when d is a unit vector
- But we won't assume this in practice

— I will use the unit-vector form to make the
geometric interpolation

,_—d-pty/(d-p?’—(d-dp-p-1)
- d-d

t=-d-pt/(d-p?—p-p+]

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Ray-sphere intersection:
geometric

tm =—p-d
2, =p-p—(p-d)?
At=1-12

=V(p-d)?-p-p+1
ton =tm £ At=—-p-d+/(p-d)2—p-p+1

CMSC 435 / 634 August 2013 Raytracing

Ray-box intersection

e Could intersect with 6 faces
individually

e Better way: box is the intersection of 3
slabs

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Ray-slab intersection

e 2D example
e 3D is the same!

Pz + tzmin d;L‘ — Lmin t (dy. dy)
l.'mnin - (Imin - p.?‘)/d;v — Ymin
Py + ["ylllill dy = Ymin — Ymax
lymin — (_ymin — py)/dy txmin
(Px: Py)
Xmin Xmax

CMSC 435 /634 August 2013 Raytracing

COMPUTER GRAPHICS

Intersection intersection

e Each intersection is an interval

e Want last entry point and first exist
point

“tymax
i
ma i 0’ym.n
ﬁmn T / I
tmin = IIl‘cle(t;,;mi“, tymiu)
. te [bmin bmax] —o- —
tmax = ””“([.mnnxa /ym;lx)
te [tymin tymax] - . .
te | lxmin: (xmax] all tymin' tymax] e
Shirley fig. 10.16

CMSC 435 / 634 August 2013 Raytracing

Ray-triangle intersection

e Condition I: point is on ray

- Rt)=p+td
e Condition 2: point is on plane
- (x-a).n=0

e Condition 3: point is on the inside of
all three edges

e First solve 1 & 2 (ray-plane
intersection)
— Substitute and solve for t:

(p+td—a) - n=0
(a—p)-n

f —
d-n

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Ray-triangle intersection

e In plane, triangle is the intersection of
3 half spaces

CMSC 435 /634 August 2013 Raytracing

COMPUTER GRAPHICS

Inside-edge test

e Need outside vs. inside

e Reduce to clockwise vs.
counterclockwise

- Vector of edge to vector to x
e User cross product to decide

- & 1 /
— DU:\
——
\v 7 g B (/1
~)<),
e O \

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Ray-triangle intersection

(b—a)x(x—a)-n>0
(c—=b)x(x—b) - n>0

(a—c)x(x—c)n>0

CMSC 435 /634 August 2013 Raytracing

COMPUTER GRAPHICS

Image so far

e With eye ray generation and sphere
intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy<ny
for 0 <=ix<nx {
ray = camera.getRay(ix, iy);
hitSurface, t = s.intersect(ray, 0, +inf)
if hitSurface is not null
image.set(ix, iy, white);

}
CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Intersection against many
shapes

e The basic idea is

Group.intersect (ray, tMin, tMax) {
tBest = +inf; firstSurface = null;
for surface in surfaceList {
hitSurface, t = surface.intersect(ray, tMin, tBest);
if hitSurface is not null {
tBest = t;
firstSurface = hitSurface;
}
}

return hitSurface, tBest;

}

— this is linear in the number of shapes
but there are sublinear methods (acceleration structures)

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Image so far

e With eye ray generation and scene
Intersection

for 0 <=iy <ny
for0<=ix<nx {
ray = camera.getRay(ix, iy);
¢ = scene.trace(ray, O, +inf);
image.set(ix, iy, ¢);
}

Scene.trace(ray, tMin, tMax) {
surface, t = surfs.intersect(ray, tMin, tMax),
if (surface != null) return surface.color();
else return black;

}

CMSC 435 /634 August 2013 Raytracing

COMPUTER GRAPHICS

Shading

e 2D example
e 3D is the same!

Pz + tzmin d¢ — Tmin t (dx, dy)
temin = (Zmin —]).T)/d;v — Ymin
Py + [“.’/lllill dy = Ymin r— Ymax
lymin — (_ymin —])y)/([y txmin
(Px: Py)
Xmin Xmax

CMSC 435 /634 August 2013 Raytracing

Shading

e Compute light reflected toward camera
e Inputs:

— Eye direction

— Light direction (for each of many lights)

— Surface normal

- Surface parameters (color, shininess,...)

NS
//°\}

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Diffuse reflection

e Light is scattered uniformly in all
directions

- The surface color is the same for all viewing directions
e Lambert’s cosine law

)
//.\T

ol

YYY

Top face of cube Top face of In general, light per unit
receives a certain 60° rotated cube area is proportional to
amount of light intercepts half the light cos@=1l+n

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Lambertian shading

e Shading independent of view direction

N
//'\>

// Ld

illumination
from source

|

= kg I max(0,n -1)

|

diffuse
coefficient

diffusely
reflected
light

e Produce matte appearance

CMSC 435 / 634 August 2013

Raytracing

[Foley etal.]

COMPUTER GRAPHICS

Diffuse shading

e Image so far

Scene.trace(Ray ray, tMin, tMax) {
surface, t = hit(ray, tMin, tMax);
if surface is not null {
point = ray.evaluate(t);
normal = surface.getNormal(point);
return surface.shade(ray, point,
normal, light),

}
else return backgroundColor;

}

Surface.shade(ray, point, normal, light) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading

}

CMSC 435 /634 August 2013 Raytracing

Shadows

e Surface is only illuminated if nothing
blocks its view of the light

e With ray tracing it is easy to check
— Just intersect a ray with the scene

e Image so far

Surface.shade(ray, point, normal, light) {
shadRay = (point, light.pos — point);
if (shadRay not blocked) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading
}

return black;

}

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Shadow rounding errors

e Don’t fall victim to one of the classic
blunders

e What is going on?

— Hint: at what t does the shadow ray
intersect the surface you’re shading

CMSC 435 / 634 August 2013 Raytracing

Shadow rounding errors

e Solution shadow rays start a tiny
distance from the surface

e Do this by moving the start point, or
by limiting the t range

F_ _ﬂ
A

CMSC 435 / 634 August 2013 Raytracing

Multiple lights

e Important to fill in black shadows
e Just loop over lights add contributions

e Ambient shading
— Black shadows are not really right
— One solution: dim light at camera

— Alternative: add a constant "ambient” color
to the shading...

e Image so far

shade(ray, point, normal, lights) {

result = ambient;

for light in lights {
if (shadow ray not blocked) {

result += shading contribution;

}

}

return result;

}

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Specular shading (Blinn-
Phong)

e Intensity depends on view direction
— Bright near mirror configuration

5
//.\3

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Diffuse reflection

e Close to mirror < half vector near

normal
— Measure “near” by dot product of unit
vectors
SV h = bisector(v,1)
"\ \

v+

Ls = ks I max(0, cos)P

I = kg I max(0,n - h)?

specularly
reflected
light
specular
coefficient

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Phong model - plots

e Increasing n narrows the lobe

cos o cos? o cos® =
—
)]
k)
£,
90 O
Fig. 16.9 Different values of cos” a used in the Phong illumination model

e Specular shading

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Diffuse + Phong shading

CMSC 435 /634 August 2013 Raytracing

Ambient shading

e Shading that does not depend on
anything

- Add constant color to account for disregarded
illumination and fill in black shadows

La — ka Ia

LYy 7
A .
. /..

ambient
coefficient

reflected
ambient
light

CMSC 435 / 634 August 2013 Raytracing

Putting it together

e Usually include ambient, diffuse,
Phong in one model

L=0L,+ Lg+ Lg
=ky I, + kg Imax(0,n-1) + kg I max(0,n - h)?

e The final result is the sum over many
lights

N
L=1L,+ Z [(La)i + (Ls)i]

=1

N
L=koIo+ Y [kqI;max(0,n-1;) + ks I; max(0, n - h;)?]

i=1

CMSC 435 / 634 August 2013 Raytracing

Mirror reflection

e Consider perfectly shiny surface
— There is not a highlight
- Instead there’s a reflection of other objects

e Can render this using recursive ray
tracing

— To find out mirror reflection color, ask what
color is seen from surface point in reflection
direction

e Already computing reflection direction for Phong...

- “Glazed” material has mirror reflection and
diffuse

- L=La+Ld+ Lm
- Where Lm is evaluated by tracing a new ray

CMSC 435 / 634 August 2013 Raytracing

COMPUTER GRAPHICS

Mirror reflection
e Intensity depends on view direction

- Reflects incident light from mirror direction

e Image so far (diffuse + mirror reflection -
glazed)

(glazed material on floor)

CMSC 435 / 634 August 2013 Raytracing

Ray tracer architecture 101

e You want a class called ray
— Point and direction; evaluate (t)
— Possible: tMin, tMax

e Some things can be intersected with
rays
— Individual surfaces
— Groups of surfaces (acceleration goes here)
— The whole scene
— Make these all subclasses of surface
- Limit the range of valid t values (e.g.,
shadow rays)
e Once you have the visible intersection,
compute the color

- may want to separate shading code from
geometry

— Separate class: material (each surface
holds a reference to one)

— Its job is to compute the color

CMSC 435 / 634 August 2013 Raytracing

Architectural practicalities

e Return values

— Surface intersection tends to want to return
multiple values

e T, surface, normal vector; maybe surface point
— Typical solution: an intersection record

e A class with fields for all these things

e Keep track of the intersection record for the closest
intersection

e Be careful of accidental aliasing
o Efficiency

- What objects are created for every ray? Try

to find a place for them where you can
reuse them.

— Shadow rays can be cheaper (any
intersection will do, do not need closest)

- But, “first get it right, then make it fast”

CMSC 435 / 634 August 2013 Raytracing

