Announcements

- Midterm next Tuesday
- Project 2 graded (see Alisa if you have questions)
- Project 2 highest score from this class: 118!

Curves and Surfaces Readings: Chapter 15

Announcement

- Programming assignment
 2 is due tomorrow 11:00
 pm
- Project 3 and Homework 2 are online.
- Online updates
 - Extended office hours:
 Friday: except 1-2pm

Motivations

In many applications, we need smooth shapes. So far we can only make things with corners: e.g., lines, squares, triangles Circles and ellipses only get you so far!

[Boeing]

Spline curves

Specified by a sequence of control points Shape is guided by control points (aka control polygons)

- interpolating: Passes through points
- approximating: merely guided by points

Matrix form of spline

 $\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

Matrix form of spline

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

				×	×	×	\times	\mathbf{p}_0
[_# 3	<i></i> ⁺²	+	1]	×	×	\times	\times	\mathbf{p}_1
[U	ι	ι	Ţ	×	×	\times	\times	\mathbf{p}_2
				L×	×	×	×	\mathbf{p}_3

 $\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

 $\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$

\mathbf{p}_0	×	×	Х	\times				
\mathbf{p}_1	×	×	\times	\times	1]	t	t^2	[<u>+</u> 3
\mathbf{p}_2	×	×	\times	×	T	ı	ı	
\mathbf{p}_3	×	×	\times	\times				

 $\mathbf{p}(t) = \frac{b_0(t)}{\mathbf{p}_0} + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

How splines depend on their controls

- Each coordinate is separate
 - The function x(t) is determined solely by the x coordinates of the control points
 - This means 1D, 2D, 3D, ... curves are all really the same
- Spline curves are linear function of their controls
 - Moving a control point two inches to the right moves x(t) twice as far as moving it by one inch
 - X(t), for fixed t, is a linear combination (weighted sum) of the control points' x coordinates
 - P(t), for fixed t, is a linear combination (weighted sum) of the control points

Example: piece wise linear reconstruction of lines

- (See lecture notes on transforming the canonical form into the polynomial form for lines.)
- Basis function formulation
 - Regroup expression by p rather than t

$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$
$$= (1 - t)\mathbf{p}_0 + t\mathbf{p}_1$$

Interpretation in matrix viewpoint

$$\mathbf{p}(t) = \left(\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

- Basis function: "function times point"
 - Contribution of each point as t changes or think about it like a reconstruction filter

Example: piece wise linear reconstruction of lines

- Basis function: "function times point"
 - Basis functions: contribution of each point as t changes
 - Can think of them as blending functions glued together
 - This is like a reconstruction filter

Spline Properties

Continuity

- Smoothness can be described by degree of continuity
 - Zero-order (C0): position matches from both sides
 - First-order (C1): tangent matches from both sides
 - Second-order (C2): curvature matches from both sides

Continuity

- **Parametric continuity (C)** of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
- Neither form of continuity is guaranteed by the other
 - Can be C1 but not G1 when P(t) comes to a halt (next slide)
 - Can be G1 but not C1 when the tangent vector changes length abruptly.

Examples: Geometric vs. parametric continuity

Control

- Local control
 - Changing control point only affects a limited part of spline. Without this, splines are very difficult to use

- Convex hull property
 - Convex hull = smallest convex region containing points
 - Think of a rubber band around some pins
 - Some splines stay inside convex hull of control points
 - Simplified clippings, culling, picking etc.

Affine invariance

- Transforming the control points is the same as transforming the curve
 - True for all commonly used splines
 - Extremely convenient in practice

Splines

We have discussed the matrix form of a spline

 $\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$

				\times	Х	×	\times	\mathbf{p}_0
[_# 3	<i></i> ⁺²	+	1]	×	×	×	\times	\mathbf{p}_1
L C	ı	ι	T	×	×	\times	\times	\mathbf{p}_2
				Γ×	Х	\times	\times	\mathbf{p}_3

 $\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

 $\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$

\mathbf{p}_0	×	×	×	\times				
\mathbf{p}_1	\times	\times	×	×	1]	+	+2	[_# 3
\mathbf{p}_2	\times	\times	\times	×	T	U	ı	L C
\mathbf{p}_3	\times	\times	\times	\times				

 $\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

Control the basis function to form splines

Hermite splines

 Constraints are endpoints and endpoint tangents

• Basis function $1 \xrightarrow{P_0} \xrightarrow{P_1} \xrightarrow{$

Bezier curve

 See lecture notes On Oct 8th on construction from canonical form to polynomial form

Hermite to Bezier

- Mixture of points and vectors
- Specify tangents as differences of points

Hermite to Bezier

Bezier curve matrix representation

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

Hermite to Bezier

Bezier curve matrix representation

Chaining spline segments

- Bezier curves are convenient because their controls are all points and they have nice properties
 - And they interpolate every 4th point
- No continuity built in
 - Achieve C1 using colinear control points

Subdivision

 A Bezier spline segment can be split into a two segment curve

Bezier surfaces

• Can be directly derived from the 2D form (*equation in lecture notes*)