
C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 1

Pipeline and
Rasterization

Readings: Chapter 8
(math: section 2.7)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 2

Pipeline

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 3

The graphics pipeline
•  The stand approach to object-

order graphics
•  Many versions exist

– Software, e.g., Pixar’s EYYES
architecture

– Hardware, e.g., graphcs card
(Nvidia)
• Amazing performance:

millions of triangles per
frame

•  Our focus: abstract version of
hardware pipeline

•  “Pipeline” because of many stages
– easy to parallel
– Remarkable performance of graphics

card

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 4

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 5

Primitives

•  Points
•  Line segments

– And chains of connected line
segments

– Triangles

•  And that is all!
– Curves? Approximate them with

chains of line segments
– Polygons? Break them up into

triangles
– Curved regions? Approximate

them with triangles.

•  Trend has been toward
minimal primitivies
– Simple, uniform, repetitive: good

for parallelism

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 6

Rasterization

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 7

Primitives

•  First job: enumerate the pixels
covered by a primitive
–  Simple, aliased definition: pixels whose

centers fall inside

•  Second job: interpolate values
across the primitive
– E.g., colors computed at vertices
– Normals at vertices
– Will see applications later on

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 8

Rasterizing lines

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 9

Rasterizing lines

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 10

Point sampling

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 11

Rasterizing lines algorithm

Line equation: y = b + mx

Simple algorithm:
//Evaluate line equation per column:
for x=ceil(x0) to floor (x1)
 y = b + m * x
 output (x, round(y));

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 12

Point sampling result
but round is slow
and the result has
undesirable Moire
graph effect

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 13

Optimizing line drawing:
Bresenham lines result
(midpoint algorithm)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 14

Midpoint algorithm
•  At each pixel the only options are

E and NE
•  d = m(x+1) + b-y
•  d>0.5 decides between E and NE

– Only need to update d for
integer steps in x and y; we
can do that with addition

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 15

Midpoint algorithm

x = ceil(x0)
y = round(m*x + b)
d = m*(x+1)+b-y
while x<floor(x1)
 if d>0.5
 y+=1
 d-=1
x+=1
d+=m
Output(x,y)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 16

Attributes interpolation

• Attributes:
– Color
– Normal vector

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 17

Rasterizing triangles
• The most common case in

most applications
• Simple way to think of

algorithm follows the
pixel-walk interpretation
of line rasterization
– Walk from pixel to pixel

over (at least the polygon’s
area)

– Evaluate linear functions as
you go

– User those functions to
decide which pixels are
inside

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 18

Rasterizing triangles

• Input:
– Three 2D points (the

triangle coordinates in pixel
space)

– parameter attributes at
each vertex

• Output
– A list of fragments, each

with
• The integer pixel coordinates

(x, y)
• Interpolated parameter values

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 19

Rasterizing triangles

(See class notes for the drawing
algorithm.)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 20

Barycentric coordinates

• A coordinate system that
does not use orthogonal
basis
– Algebraic viewpoint:

– Geometric viewpoint (areas)
• (refer to in-class notes)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 21

Barycentric coordinates

• Properties
– Geometric viewpoint:

distances

– Linear viewpoint: basis of
edges

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 22

Barycentric coordinates

• Properties
– Basis for the plane

– Triangle interior test:

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 23

Barycentric coordinates
•  Calculation (derivation in class)
•  Example: take a triangle and a

point in this triangle from the
terrain in project 2 and see how
we calculate the point barycentric
coordinates.

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 24

Pixel-walk rasterization

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 25

Primitives

•  First job: enumerate the pixels
covered by a primitive
–  Simple, aliased definition: pixels whose

centers fall inside

•  Second job: interpolate values
across the primitive
– E.g., colors computed at vertices
– Normals at vertices
– Will see applications later on

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 26

Compute colors

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 27

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 28

Linear interpolation
•  Pixels are not exactly on the line
•  Define 2D function by projection

on line
– Linear in 2D
– Use linear interpolation as the

vertex calculation

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 29

Triangle coloring interpolation
result

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 30

Compute normals

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 31

Insert normal

• We could associate the
same normal/color to
every point on the face of
a triangle by computing

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 32

Insert normal

• For example, we could
associate the same
normal/color to every
point on the face of a
triangle by computing

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 33

Insert normal
•  Instead

– We could associate normals
to every vertex:

so that the normal at point q in
the triangle is the
interpolation of the normals
at the vertices

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 34

Insert normals

Two insertion results: which is better?

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 35

More uses: texture mapping

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 36

Clipping

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 37

• Rasterization tends to
assume the triangles are
on screen
– Particularly problematic to

have triangles crossing the
plane Z=0

• After projection, before
perspective divide

• Clip against the 6 planes

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 38

Clipping a triangle against a
plane

• 4 cases, based on the
sidedness of vertices
– All in (keep)
– All out (discard)
– One in, two out (one clipped

triangle)
– Two in, one out (two clipped

triangle)

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 39

Operations before and after
rasterization

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 40

Pipeline revisited

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 41

Hidden surface removal

• We have discussed how to
map primitive to image
space
– Projection and perspective

are depth cues
– Occlusion is another very

important cue

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 42

Back face culling

• For closed shapes you will
never see the inside
– Therefore only draw

surfaces that face the
camera

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 43

Back face culling

• For closed shapes you will
never see the inside
– Therefore only draw

surfaces that face the
camera

– Implemented by checking
n.v

C O M P U T E R G R A P H I C S

CMSC 435 / 634 August 2013 Pipeline and rasterization 44

The z buffer

• Draw in any order, keep
track of closest
– Allocate extra channel per

pixel to keep track of
closest depth so far

– When drawing, compare
object’s depth to current
closest depth and discard if
greater

