CMSC 435 / 634 Introduction to Computer Graphics

Project Assignment 4: Raytracing

Goals of this project:

Understand how images are created in computer graphics (animations). Once this
project is completed, you will understand how reflection, refraction, and texture are
generated in graphics.

This is also the first project that the instructor won’t provide any supporting code to
give you maximum flexibility to start engineering your own computer graphics
program.

The Assignment

Ray tracing is a simple and powerful algorithm for rendering images. Within the
accuracy of the scene and shading models and with enough computing time, the
images produced by a ray tracer can be physically accurate and can appear
indistinguishable from real images. The ray tracer we do in this class will not be
powerful enough to produce physically accurate ones and if you are really
interested, go on to take CMSC 635, where you will learn how to build modern
physically accurate images.

In this assignment, your ray tracer will have support for:

* Spheres
* Diffuse shading and ambient shading
* Arbitrary orthogonal cameras

Your output should be:

* Animage in PPM format

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html

Input File Format

The input file for your ray tracer is in XML. An XML file contains sequences of nested
elements that are delimited by HTML-like angle-bracket tags. For instance, the XML
code:



<scene>
<camera>
</camera>
<surface type=Sphere>
<center> 0, 1, 1 </center>
</surface>
</scene>

contains four elements. One is a scene element that contains two others, called
camera and surface. The surface element has an attribute named type that has the
value Sphere. It also contains a center element that contains the text “0, 1, 1”, which
in this context would be interpreted as the 3D point (0, 1, 1).

An input file for the ray tracer always contains one scene element, which is allowed
to contains tags of the following types:

* Surface: This element describes a geometry object. It must have an attribute
type with value Sphere (we won’t use any other geometries). For Sphere,
center containing a 3D point, and radius containing a real number.

* (Camera: This element describes the camera. It is described by the following
elements:

o viewPoint, a 3D point that specifies the center of projection.

o viewDir, a 3D vector that specifies the direction toward which the
camera is looking. Its magnitude is not used.

o viewUp, a 3D vector that is used to determine the orientation of the
iamge.

o projNormal, a 3D vector that specifies the normal to the projection
plane. Its magnitude is not used, and negating its direction has no
effect. By default it is equal to the view direction.

o projDistance, a real number d giving the distance from the center of
the image rectangle to the center of the projection.

o viewWidth and viewHeight, two real numbers that give the dimensions
of viewing window on the image plane.

The camera’s view is determined by the center of projection (the viewpoint)
and a view window of size viewWidth and viewHeight. The window’s center is
positioned along the view direction at a distance d from the viewpoint. It is
oriented in space so that it is perpendicular to the image plane normal and its
top and bottom edges are perpendicular to the up vector.

* Image: This element is just a pair of integers that specify the size of the
output image in pixels.

* Light: This element describes a light. It contains the 3D point position and the
RGB color color.

* Shader: This element describes how a surface should be shaded. It must have
an attribute type with value Lambertian. The Lambertian shader uses the
RGB color diffuseColor. A shader can appear inside a surface element, in
which case it applies to that surface.



Your ray tracer framework:
Your ray tracer may contain a parser (the instructor strongly encourages you to
write a lib to do this), a vector calculator lib (using C++ will make your life easier

since its vector class handles addition, multiplication, and dot produce already), and
your ray tracer.

Start now! Or you will probably not finish. Really, I promise you will not be able to
do it in the last two days.

Extra credits

* For 15 points, render your scene with texture (define a texture tag in your
input file.

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html

* For 15 points, render your scene with refraction effects (define a refraction
tag in your input file.)
* For 15 points, generate some interesting geometries or material or texture.

What to turn in
Source code only by email to TA. Please do not include any .o files. Please include:

* A README with your handin containing basic information about your design
decisions and any known bugs or extra credit;

* How to compile and run your code as if you are telling a colleague that is to
continue the development.

Note: Please comment on your code. The better Alisa understands your code, the
higher your grade is likely to be.



