
Metamorphic Virus: Analysis and
Detection

Evgenios Konstantinou
Supervisor: Dr. Stephen Wolthusen

Technical Report
RHUL-MA-2008-02
15 January 2008

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Abstract

Metamorphic viruses transform their code as they propagate, thus evading
detection by static signature-based virus scanners, while keeping their func-
tionality. They use code obfuscation techniques to challenge deeper static
analysis and can also beat dynamic analyzers, such as emulators, by altering
their behavior. To achieve this, metamorphic viruses use several metamor-
phic transformations, including register renaming, code permutation, code
expansion, code shrinking, and garbage code insertion. In this thesis, an
in-depth analysis of metamorphic viruses is presented, along with the tech-
niques they use to transform their code to new generations. In order to give
a better understanding of metamorphic viruses, a general discussion on ma-
licious code and detection techniques is given first. Then, the description of
several techniques to detect metamorphic viruses is given. A fair number of
papers on metamorphic viruses exists in the literature, but no one is a com-
plete discussion of all metamorphic techniques and detection methods. This
thesis aims at a complete discussion of all metamorphic techniques used by
virus writers so far, and all detection techniques implemented in antivirus
products or still experimental. It accomplishes this by an in-depth research
on malware and metamorphic viruses, through the existing literature. Due
to space and time limitations, an exhaustive discussion was not possible in
this thesis.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 2
1.3 Final Remarks . 2

2 Introduction to Malicious Software 4
2.1 Viruses . 4
2.2 Worms . 8
2.3 Trojan Horses . 9
2.4 Spyware . 10
2.5 Rootkits . 11

3 Virus Detection Mechanisms 14
3.1 First-Generation Scanners . 14

3.1.1 String Scanning . 14
3.1.2 Wildcards . 15
3.1.3 Mismatches . 15
3.1.4 Generic Detection . 15
3.1.5 Bookmarks . 15
3.1.6 Top-and-Tail Scanning 16
3.1.7 Entry-Point and Fixed-Point Scanning 16

3.2 Second-Generation Scanners 16
3.2.1 Smart Scanning . 16
3.2.2 Skeleton Detection . 17
3.2.3 Nearly Exact Identification 17
3.2.4 Exact Identification 17
3.2.5 Heuristics Analysis . 17

3.3 Algorithmic Scanning Methods 18
3.3.1 Filtering . 19
3.3.2 Static Decryptor Detection 19
3.3.3 X-RAY Scanning . 19

3.4 Code Emulation . 20
3.4.1 Dynamic Decryptor Detection 22

1

4 Advanced Code Evolution Techniques 23
4.1 Encrypted Viruses . 23
4.2 Oligomorphic Viruses . 26
4.3 Polymorphic Viruses . 28

4.3.1 The 1260 virus . 28
4.3.2 The Dark Avenger Mutation Engine (MtE) 29
4.3.3 Polymorphic Viruses for Windows 30

5 Metamorphic Viruses 33
5.1 Introduction . 33
5.2 The Metamorphic Virus . 34

5.2.1 A formal definition . 35
5.2.2 Anatomy of a Metamorphic Virus 36
5.2.3 The Metamorphic Virus According to a Virus Writer . 37

5.3 Metamorphic Techniques . 38
5.3.1 Garbage Code Insertion 38
5.3.2 Register usage exchange 39
5.3.3 Permutation Techniques 40
5.3.4 Insertion of Jump Instructions 40
5.3.5 Instruction Replacement 42
5.3.6 Host Code Mutation 43
5.3.7 Code Integration . 43

5.4 Advanced Metamorphic Viruses 44
5.4.1 Win95/Zmist . 44
5.4.2 {Win32, Linux}/Simile 47

5.5 The Virus Evolution: A Simple Comparison 51

6 Metamorphic Virus Detection 54
6.1 The Weakness of Metamorphic Viruses 54
6.2 Geometric Detection . 55
6.3 Wildcard String and Half-Byte Scanning 56
6.4 Code Disassembling . 56
6.5 Using Emulators . 57

6.5.1 Using Negative and Positive Features 58
6.5.2 Using Emulator-Based Heuristics 59
6.5.3 Dummy Loops Detection 60
6.5.4 Stack Decryption Detection 60

6.6 Code Transformation Detection 61
6.7 Subroutine Depermutation . 63
6.8 Using Regular Expressions and DFA 63
6.9 Experimental Detection Techniques 67

6.9.1 Detection Using Engine Signature 67
6.9.2 Detection Using Redundancy Control Strategy 70
6.9.3 Detection Using Control-Flow Graph Matching 71

2

6.9.4 Detection Using Algebraic Specification 73
6.9.5 Hidden Markov Models 74
6.9.6 Zeroing Transformation 76

7 Conclusions and the Future 79
7.1 Current Trends in Malware 79
7.2 Trends in Metamorphic Malware 81
7.3 Future Work . 83

Bibliography 84

3

Chapter 1

Introduction

1.1 Motivation

The recent years have been very interesting, but at the same time very
frustrating for the information security professional. As information technol-
ogy is expanding and improving, so are its threats. Its adversaries evolved
from the 15 year old “script kiddy”, to the professional hacker employed by
organized crime. A recent research in the UK, has shown that the expo-
nential increase of broadband internet connection has been accompanied by
high virus infection rates. The research showed that around 97% of busi-
nesses in the UK have internet connection and around 88% have broadband,
thus the thread from malicious software has never been greater [1].

A recent research funded by the UK government, reports that virus in-
fection was the biggest single cause of respondents’ worst security incidents,
accounting for roughly half of them. Two-fifths of these were described as
having a serious business impact. The report also informs that virus in-
fections tended to take more effort to resolve than other incidents, some of
them needing more than 50 person-days.

The latest trend for cyber criminals, is to target confidential information
in order to use it for fraud, such as identity theft, or sell the information
to third-parties for financial gain. From the volume of the top 50 malicious
code reported to Symantec between July 1 and December 31, 2006, 66%
targeted confidential information [2]. This is very serious as it demonstrates
that modern virus writers threaten not only our precious time – as they used
to do – but also our reputation and money.

With the exception of rootkits, – which is a very recent technology –
metamorphic viruses must be the most sophisticated malicious pieces of
code. To write a decent metamorphic engine is a very challenging task and
this is why we haven’t seen many examples of this type of virus in the wild.
Some of them are so well written that modern antivirus products can still
miss them some times, as shown by Christodorescu and Jha in [3]. Because

1

of their complexity their study is very interesting, and the fact that here
were no real metamorphic viruses in the wild since Simile in 2002, should
not make the virus researcher relaxed. The technology is there and waiting
to be exploited and implemented into modern types of malware, such as
network worms and spyware.

1.2 Outline

The first three chapters are introductory and their purpose is to prepare
the reader for the most advanced metamorphic techniques and their detec-
tion. In Chapter 2, an introduction to different forms of malicious software
is given. It begins by giving a formal definition of a computer virus and then
by describing the different types of viruses that exists. Then, the computer
worm and the Trojan horse are defined. In the last two sections two more
recent malware are described; spyware and – the very dangerous – rootk-
its. Chapter 3 describes some of the most common and widely used – by
antivirus products – detection techniques. It begins with the most simple
techniques and finishes with some more recent and more advanced tech-
niques for detection of computer viruses. Chapter 4 describes some more
advanced code evolution techniques, implemented by virus writers in order
to make their viruses avoid detection. It begins with the simple encrypted
virus and finishes with the more advanced polymorphic virus.

The advanced metamorphic virus is described in Chapter 5. Formal def-
initions of a metamorphic virus are provided and a description of the way
they work and why they are dangerous is given. Then, Chapter 5 describes
the different techniques used by metamorphic viruses to avoid detection by
mutating their code and form new generations. In the last section, a more
detailed description of the two most advanced metamorphic viruses ever cre-
ated is given: Win95/Zmist and {Win32,Linux}/Simile. Chapter 6 describes
several different techniques used to detect metamorphic viruses. It begins by
discussing the weak points of a metamorphic virus and why although very
difficult to detect, they are not invisible. Then, the detection techniques im-
plemented into antivirus software are described. The last section, describes
several experimental techniques published in academic papers, but not yet
implemented in commercial antivirus products. This thesis concludes with
some future trends on general malware and metamorphic malware.

1.3 Final Remarks

The term computer virus was originally used by Dr. Fred Cohen in his
PhD thesis, in 1986 [4]. The term has been widely used and is now a synonym
to any form of malicious software. However, since 1986 many other forms
of malicious software were created, such as computer worms and Trojans,

2

which do not follow Dr. Cohens’ definition of a computer virus. Thus, the
term computer virus is not technically correct to describe worms or Trojans.
However, the term computer virus is used excessively in literature to describe
all forms of malicious software. In this report, the term computer virus will
only be used to describe the file infecting, replicating malicious code defined
in section 2.1. The term malware will be used to describe all forms of
malicious software. However, the term virus writer will be used to describe
the person who is responsible for creating all types of malicious software.

3

Chapter 2

Introduction to Malicious
Software

Malicious software or malware for short, are “programs intentionally
designed to perform some unauthorized – often harmful or undesirable –
act” [5]. Malware is a generic term and is used to describe many types of
malicious software, such as viruses and worms.

This chapter describes the most popular types of malicious software,
which are computer viruses, worms, Trojan horses, spyware, and rootkits.
Emphasis is given to the first three, as spyware and rootkits are less relevant
with the subject of this paper – the analysis and detection of metamorphic
viruses.

2.1 Viruses

In 1987, Fred Cohen, the pioneer researcher in computer viruses, defined
a computer virus to be: “A program that can infect other programs by mod-
ifying them to include a possibly evolved copy of itself”. Figure 2.1 on the
following page, is Dr. Cohens’ pseudo-code of a simple computer virus.

This is a typical structure of a computer virus which contains three
subroutines. The first subroutine, infect-executable, is responsible for finding
available executable files and infecting them by copying its code into them.
The subroutine do-damage, also known as the payload of the virus, is the
code responsible for delivering the malicious part of the virus. The last
subroutine, trigger-pulled checks if the desired conditions are met in order
to deliver its payload. Examples of conditions could be the day of the week,
the number of infections, or the current date.

Nowadays, there are so many different kinds of computer viruses that it
is difficult to provide a precise definition. In [7], it is suggested that Cohens’
definition can be a bit misleading if taken to its strictest sense. For example,
companion viruses do not strictly follow Cohens’ definition because they do

4

program virus :=
{1234567;

subroutine infect-executable :=
{loop: file = random-executable;
if first-line-of-file = 1234567

then goto loop;
prepend virus to file;
}

subroutine do-damage :=
{whatever damage is desired}

subroutine trigger-pulled :=
{return true on desired conditions}

main-program :=
{infect-executable;
if trigger-pulled then do-damage;
goto next;
}

next:}

Figure 2.1: Simple virus V (from [6])

not modify the code of other programs and do not need to include a copy
of themselves within other programs.

Peter Szor in [7], attempts to give a more accurate definition: “A com-
puter virus is a program that recursively and explicitly copies a possibly
evolved version of itself.” He also explains that viruses infect other files
or system areas with intend to multiply themselves and form new genera-
tions. With a few exceptions, viruses do not exist as stand alone files or
programs but require a host file. Viruses require user interaction to spread.
This paper will follow the definition given by Roger A. Grimes in [8].

Definition 1. A virus is a malicious program that modifies other host files
(few exceptions) or boot areas to replicate. In most cases the host object
is modified to include a complete copy of the malicious code program. The
subsequent running of the infected host file or boot area then infects other
objects.

5

Boot Sector Viruses

Boot sector viruses infect the Master Boot Sector of hard drives or floppy
drives and infect other machines only when the machine boots up from an
infected floppy disk. Boot Sector viruses were the first successful viruses
created and can infect a machine regardless of what Operating Systems
runs on it [7]. Today they are rarely found because floppy disks are not so
common any more.

One of the most successful boot sector viruses of all time is the Stoned
virus, including his infamous variant Michelangelo. Stoned is a very simple
boot sector virus, but at one time it was so prevalent that National Com-
puter Security Association reported that roughly one out of every four virus
infections involved some form of Stoned 1.

As described in [9], Stoned hides the original boot-sector somewhere on
the disk and then it occupies the usual boot sector location. Then the BIOS
loads the virus at startup and transfers control to it. After the virus is
finished with its work, it loads the original boot sector which then loads
the operating system. This technique is almost universal among boot-sector
viruses and it has the advantage of being somewhat operating system inde-
pendent.

File Infecting Viruses

Program viruses infect executable programs, such as EXE or COM, by
attaching themselves to them. The virus executes and infects other exe-
cutables when its host file is executed. To infect an EXE file, a virus has
to modify the EXE Header and the Relocation Pointer Table2, and add its
own code to the Load Module. This can be done in many ways.

The Intruder-B virus attaches itself to the end of an EXE file and gains
control when the file first executes. To do this it needs a routine which
copies program code from memory to a file on disk, and then adjusts the
file. The virus has its own code, data, and stack segments. At the end the
virus passes control to the host program. The above description is given in
[9].

Memory Resident Viruses

Memory resident viruses remain in memory after the initialization of
virus code. They take control of the system and allocate a block of memory
for their own code [7]. They remain in memory while other programs run
and infect them. File infecting viruses could be memory resident as well.

Memory resident viruses are highly portable because they can jump
across both directories and disk drives by taking advantage of the users’

1NCSA News, (Mechanicsburg, PA), Vol. 3, January 1992, p. 11
2A variable length table of pointers to segment references

6

actions as they change directories and drives in the normal use of their com-
puter. Moreover, these viruses distribute the infection process over time
better than direct acting viruses. A technique that a virus can use to go
resident is to take advantage of a memory hole, which is an unused part of
memory that is not likely to be overwritten [9].

Macro Viruses

These viruses are written in macro languages and infect files that make
use of the particular language. A macro is a series of steps that could
otherwise be typed, selected, or configured, but are stored in a single location
so they can be automated. Some programs are nothing than hundreds of
macros build around vendors’ applications. Macro languages are used to
allow more sophisticated macro development and environment control, like
manipulating and creating files, changing menu settings, and much more.
Macro languages are so easy to use that virus writers can learn to write
their first virus in a couple of days.

What makes them particularly fast spreading is that users share docu-
ments and data in a much larger degree than application files. Macro viruses
became a big problem because Microsoft allowed macro code to be saved
within the body of a document or data files (Microsoft Office files). Macro
viruses can be cross-platform and multicultural, infecting any computer ca-
pable of running Office. A single macro virus can infect different types of
computers running under different languages because different versions of
word share the same macro language.

Macro viruses can do almost anything that is possible to be done on a
system, such as corrupting data, creating files, inserting pictures, sending
files across the internet, modifying registries, looking for passwords, infecting
other programs, and even formatting hard drives. They can use the VBA3

SHELL command or utilize the operating systems’ API to run any external
command they want.

Macro viruses usually spread when a user opens or closes an infected
document. The macros contained in the document infects the users’ pro-
gram and other documents. Documents are spread by using email, the web,
or other portable media. The first widespread macro virus, Concept, was
spread on two CD-ROMs which Microsoft made available as part of their
marketing handouts. The virus then jumped from the CD-ROMs into mem-
ory, infecting other documents. All information about macro viruses comes
from [8].

3Visual Basic for Applications: A macro language incorporated into many of Microsofts’
applications.

7

2.2 Worms

The first researcher who tried to give a formal and mathematical defini-
tion of a computer worm was Fred Cohen in [10]. A more easy to understand
definition is given in [8]:

Definition 2. A worm is a sophisticated piece of replicating code that uses
its own program coding to spread, with minimal user intervention.

A worm usually exists as a standalone program that executes itself au-
tomatically on a remote machine, without any user interaction. Worms are
network viruses, primarily replicating on networks [7]. They typically do
not require any host files although some types of worms do. It is derived
from the word tapeworm, a parasitic organism that lives inside a host and
saps its resources to maintain itself.

A network worms’ life cycle, as described in [11], is divided into seven
phases. The first phase is the Initialization Phase, in which the worm may
install software, determine the configuration of the local machine, instantiate
global variables, and begin the main worm process. Following is the Payload
Activation Phase, in which the worm activates its payload. This phase is
logically distinct from the other phases and it does not usually affect the
network behavior of the worm. Next is the Network Propagation Phase,
which is the phase that encompasses the behavior that describes how a
worm moves through a network. In this phase the worm selects a set of
targets and tries to infect them. The Network Acquisition Phase describes
the process a worm goes through to select targets for infection. In the next
phase, Network Reconnaissance Phase, the worm attempts to learn about
the environment, particularly with respect to the targeted hosts. This phase
includes validating what a worm knows about the environment and enables
the worm to make more informed decisions about its operations. Next is
the Attack Phase, which is when the worm performs actions that enable it
to acquire elevated privileges on a remote system, usually exploiting other
software vulnerabilities. The Infection Phase is the last phase in the worms’
life cycle and is when the worm leverages the acquired privileges on the
target host to begin the Initialization Phase of a new instance of the worm.

What makes worms faster spreading and more dangerous than viruses
is that they require no user interaction to replicate. Some worms use ac-
tive network connections to send themselves and infect new targets. SQL
Slammer, which was the fastest spreading worm ever created, infected its
victims by randomly selecting IP addresses, eventually finding and infecting
all susceptible hosts [12]. Other worms, like the infamous Melissa, attach
themselves in emails and then send themselves to unsuspected users. Melissa
was a Macro Virus but can also be seen as a worm because it used its own
code to spread.

8

Worms usually exploit vulnerabilities in other software. In 1988, the fa-
mous Morris Worm exploited flaws in utility programs in systems based on
BSD-derived versions of UNIX. The flaws allowed the worm to break into
those machines and copy itself [13]. Slammer took advantage of a buffer-
overflow vulnerability in computers on the Internet running Microsofts SQL
Server or Microsoft SQL Server Desktop Engine (MSDE) 2000. More infor-
mation on Slammer can be found in [12].

2.3 Trojan Horses

A Trojan horse program is any program that intentionally hides its mali-
cious actions while pretending to be something else. The following definition
was given in [8]:

Definition 3. A Trojan, or Trojan horse, is a non-replicating program mas-
querading as one type of program with its real intent hidden from the user.

The term Trojan horse comes from the Greek mythology. It was the
name of a giant horse built to trick the Trojans and help the Greek soldiers
sneak into Troy. Simple forms of Trojans pretend to be some kind of pro-
gram, like a game or utility, but when a user runs them they do something
malicious to the system, usually without the users’ knowledge. Some ma-
licious users create their own Trojan-infected programs from scratch, while
others find legitimate programs, attach the Trojan to them, and place them
on the internet for unsuspected users to download. In 2006, Trojans out-
numbered by far windows worms or any other type of malware averaging
around 80% of all malware detected by Sophos Labs throughout the year
[14].

A Trojan is different from a virus as it does not copy its code to other
host files or boot areas [8]; instead, it exists as a standalone program that
masquerades as something else. Also, it does not copy itself in order to
replicate. It depends on users to send the Trojan to other users or download
the Trojan from the internet and run it on their machines. Because worms
do not infect other files they are often treaded as Trojans, but worms do not
masquerade as other programs as trojans do, but they use their own code
to replicate. Trojans are often distributed by worms.

Some of the many different types of Trojan horses are described in the
following paragraphs. All information about the types of Trojans comes
from [8].

Remote administration Trojans (RAT) allow remote malicious
users to have complete control of a machine. Complete control means that
a malicious user can read what the user is reading, record key strokes, cap-
ture screen shots, copy and delete files, and many more. RATs consist of

9

a client which is installed on the victims’ computer, and a server which
enables malicious users to remotely control the client. Some of the most
popular RATs found in-the-wild was NetBus, Subseven, DeepThroat, and
the infamous Back Orifice.

Backdoor Trojans open up a new entry point for hackers by installing a
new TCP/IP service or mapping a new drive share. The Trojan can easily
open up Windows drive shares, which can be accessed from the Internet.
Also, a Trojan can allow the malicious user to modify files or install more
services.

Network Redirection Trojans as their name suggests, allow network
redirection. They allow malicious users to redirect specific attacks, through
a compromised intermediate host, towards a new target. This can allow Tro-
jans to subvert filtering firewalls, and also makes tracing back the attacker
difficult.

Distributed Attacks Trojans spread to as many machines as they can
and then wait for commands. Usually, the exploit is directed towards an-
other central target. Up to thousands of these malicious programs can be
spread over a period of months and can be then used to attack a common
target, causing a Denial of Service (DoS) or gather information that can
be used later. Infected machines are called Zombies and the set of infected
machines is called a Zombie Network.

2.4 Spyware

Spyware is the name given to the class of software that is surreptitiously
installed on a computer, monitors user activity, and reports back to a third
party on that activity [15]. The Federal Trade Commission defines spyware
as software that aids in gathering information about a person or organization
without their knowledge, and that may send that information to another
entity without the users’ consent. Spyware includes:

Adware are applications that may monitor user web browsing activity and
send targeted advertisements to the user desktop based on that brows-
ing activity. They actually change the way a users web browser works
by installing browser helper objects, or changing the default settings of
Web browsers to display different home pages and bookmark lists and
redirect searches to different search systems [15].

Key Loggers are software that monitor what a user types on the keyboard.
They are used to capture usernames, ID, passwords, credit card num-
bers, or any other sensitive information. They are usually considered

10

to be malicious despite the fact that some key-loggers can be used for
legitimate purposes.

Trojan Horses See section 2.3.

Spyware can be used by anyone who wants to know something about an-
other person and their computing habits [15]. Some legitimate uses include
parental control programs that are used to monitor the computing habits
of children and employers monitoring workers for appropriate internet use.
Also, businesses are increasingly making the use of spyware to gather valu-
able customer data, and it is becoming increasingly popular in e-business
circles to use spyware as a means to gain additional revenues [15]. But the
main problem is hackers and other malicious users, who make use of spyware
to steal personal information and use it for gaining money through fraud.
Hackers may use the information themselves or sell the information to other
interested third parties.

Spyware can be installed by viruses and worms or when a user opens
the attachment of infected emails, or by just surfing to a certain web page.
Malicious users exploit vulnerabilities of some web browsers to download
and install spyware on a system usually without the users’ knowledge – a
technique known as drive-by download. Most spyware requires some user
action for it to be installed on a computer, such as downloading a piece of
software. Peer-to-peer software help spyware spread because spyware travel
hidden in program utilities shared by users who use peer-to-peer software.
Also, users may be tricked to download spyware by pop-up windows that
ask them to download and install utility programs [16].

2.5 Rootkits

The term rootkit originally referred to a collection of tools used to gain
administrative access, root access, on UNIX operating systems. The collec-
tion of tools often included well-known system monitoring tools that were
modified to hide the actions of an unauthorized user. An unauthorized user
would replace the existing tools on the system with the modified versions
preventing authorized users from discovering the security breach [17]. Mod-
ern rootkits are defined as a set of malicious programmatic tools that enable
an intruder to conceal the fact that a system has been compromised, by
hiding files, processes, registry keys, and other objects, and to continue to
make use of that compromise [18]. There are two types of rootkits: user
mode and kernel mode rootkits.

User mode rootkits, like their name reveals, run in user or application
mode. When an application makes a system call, a rootkit can hijack it on
the way. These rootkits components run within user applications, by patch-
ing the APIs in each application process. A common technique user mode

11

rootkits use, is replacing or modifying system DLLs in order to hide their
presence. But because user mode applications run in their own memory
space, the rootkit must modify the memory space of each application. It
must also monitor the system for new applications and patch those applica-
tions’ memory space as well before they are fully launched [18].

Kernel mode rootkits are much more dangerous than user mode rootkits
because they run in system mode, which provides them with almost un-
limited system privileges. Their damage potential is almost unrestricted;
however, due to their complexity is much more difficult to install and main-
tain reliably [18]. A technique that kernel mode rootkits use is direct kernel
object modification (DKOM). The rootkit can modify the data structures
in the kernel memory and remove itself or other malicious processes from
the kernels’ list of running processes [17].

Rootkits is the new weapon in the arsenal of malicious users and it is
likely that this is the path that malware creators will follow in the future.
King and Chen introduced a project they call SubVirt, and demonstrate
how attackers can use virtual machine technology (VM) to improve current
malware and rootkits [19]. They showed how attackers can install a virtual
machine monitor (VMM) underneath an existing operating system and use
that VMM to host arbitrary malicious software. They call the resulting mal-
ware a virtual machine-based rootkit (VMBR), which has more control than
current malware and supports general purpose functionality. This VMBR
can hide all its state and activity from intrusion detection systems running
in the infected OS and applications. They also demonstrated that a VMBR
can be implemented on current hardware and can be used to implement
several malicious services. What is more, they showed that once installed, a
VMBR is difficult to detect and remove. This type of rootkit is very difficult
to be detected because its state cannot be accessed by software running on
the hosted operating system. There is still no malicious implementation of
a VMBR but the technology is there and it will not be long before we see
them in the wild.

More recently, a security researcher has announced the development of
a technology code-named Blue Pill, which is about creating an 100% un-
detectable walware. As she explains, “the idea behind Blue Pill is simple:
your operating system swallows the Blue Pill and it awakes inside the Ma-
trix controlled by the ultra thin4 Blue Pill hypervisor. This all happens
on-the-fly (i.e. without restarting the system) and there is no performance
penalty and all the devices, like graphics card, are fully accessible to the
operating system, which is now executing inside virtual machine. This is
all possible thanks to the latest virtualization technology from AMD called
SVM/Pacifica” [21]. Figure 2.2 on the next page, represents the idea of

4Thin hypervisors control the target machine transparently and they are based on
hardware virtualization, such as SVM, VT-x [20].

12

Blue Pill and was taken from Joanna Rutkowskas’ presentation of Blue Pill
at SyScan ’06.

Figure 2.2: Blue Pill idea (from [21])

In 2007, Joanna Rutkowska and Alexander Tereshkin decided to re-
design and write from scratch the New Blue Pill rootkit, so that it would be
possible to use it for further research. The New Blue Pill implements several
new features and it’s based on a different architecture than the original –
the HVM-like approach. More information can be found in [20].

13

Chapter 3

Virus Detection Mechanisms

This chapter presents some of the most popular techniques used by an-
tivirus software to detect computer viruses. All information about the de-
tection techniques, except otherwise stated, were taken from Peter Szors’
book “The Art of Computer Virus Research and Defense” [7].

3.1 First-Generation Scanners

First-generation scanners use simple methods to detect computer viruses.
Techniques usually involve scanning for pre-defined sequences of bytes called
strings.

3.1.1 String Scanning

String scanning is the simplest technique used by anti-virus software to
detect computer viruses. It searches for sequence of bytes (strings) that are
typical of a specific virus but not likely to be found in other programs. This
sequence of bytes is often called the signature of the virus, which is extracted
for each different virus and organized in a database. The virus scanner will
then use this database to search files and system areas for presence of the
virus. The following example string is a typical pattern of the W32/Beast
virus in EXE files, which was published in [22].

83EB 0274 1683 EBOE 740A 81EB 0301 0000

The virus scanner checks the code of EXE files and when it encoun-
ters the previous string it announces detection of the Beast virus. Usually
sixteen unique bytes is long enough to detect a 16-bit malicious code with-
out any false positives. But for 32-bit viruses to be detected safely, longer
strings might be necessary, especially when a virus is written in a high level
language.

14

3.1.2 Wildcards

Scanners that support wildcards are allowed to skip bytes or byte ranges.
In the following example the bytes represented by the ‘?’ character are
skipped. The wildcard %2 means that the scanner will try to match the
next byte – 03 in our example – in the two positions that follow it.

83EB 0274 ??83 EBO? 740A 81EB %2 0301 0000

Some early generation encrypted and polymorphic viruses can be de-
tected using wildcards. In [23] is demonstrated that even the metamorphic
virus W32/Regswap could be detected using this method.

3.1.3 Mismatches

Mismatches allow any given number of bytes in a string to be of arbitrary
value, regardless of their position. The string 11 22 33 44 55 66 77 88 with
mismatch value 3, would match the following strings.

A3 11 22 33 C9 44 55 66 0A 77 88

11 34 22 33 C4 44 55 66 67 77 88

11 22 33 44 D4 DD E5 55 66 77 88

This technique was developed for the IBM Antivirus and is useful in
creating better generic detections for families of viruses. However, it is a
relatively slow scanning algorithm.

3.1.4 Generic Detection

When more than one variants of a virus are discovered, the variants are
compared to find a common string in their code. This technique uses one
common string to detect several or all known variants of a family of viruses.
Usually, this technique makes use of wildcards and mismatches.

3.1.5 Bookmarks

Bookmarks are a simple technique to guarantee more accurate detections
and disinfections. An example bookmark could be the zero byte of the body
of a virus which is the distance between the start of the virus body and the
detection string. In case of boot viruses, good bookmarks could point to
references of the locations of the stored boot sectors. In case of file viruses,
bookmarks should point to an offset to the stored original host program
header bytes. Also, the size of the virus could be a very useful bookmark.
These bookmarks are calculated and stored separately in the virus detection
record.

15

3.1.6 Top-and-Tail Scanning

Scanning only the first and the last 2, 4, or 8KB of a file for each possible
position is a good way to make virus detection much faster. This technique
is called top-and-tail scanning and is used to optimize scanning speed by
reducing the number of disk reads. Top-and-tail scanning became popular
as the majority of early computer viruses prefixed, appended, or replaced
host objects.

3.1.7 Entry-Point and Fixed-Point Scanning

Another two techniques designed to make antivirus scanners even faster.
They take advantage of the entry-point of objects, which are made available
in the headers of objects such as executable files. The entry-point is a
common target for viruses, so entry-point scanners focuses on that position
and typically have a single position to mask their scan string.

Fixed-point scanning is used when the entry point does not have enough
good strings. The scanner sets a start position M and then match each
string at positions M +x bytes away from this fixed point. Typically, x is 0
so the number of computations is reduced and also the disk I/O is reduced.

3.2 Second-Generation Scanners

The next generation scanners appeared when simple string matching was
no longer enough to detect the more advanced computer viruses that started
to appear. Also, exact and nearly exact identification were introduced, which
made the scanning process more reliable.

3.2.1 Smart Scanning

When virus mutator kits appeared, simple string matching detection
techniques were not very useful because these mutation kits made the virus
look very different from its original form. The mutation kits worked with
assembly code and tried to insert junk instructions into the source code.

Smart scanning could skip junk instructions, such as NOPs, in the host
file and also did not store them in the virus signature. To enhance the
likelihood of detecting related variants of viruses, an area of the virus body
was selected which had no references to data or other subroutines. Smart
scanning is also useful in detecting script and macro viruses, which appear
in textual forms. Smart scanning can drop characters like Space and TAB,
which are used to change the form of the virus body and thus enhance the
detection process.

16

3.2.2 Skeleton Detection

Skeleton detection does not use strings or checksums for detection and
is especially useful for detecting macro virus families. The scanner parses
the macro statements of the virus line-by-line and drops all nonessential
statements and all white spaces. What is left is the skeleton of the body
that has only essential macro code common in macro virus, which is then
used by the scanner to detect the virus.

This technique was invented by the Russian virus researcher Eugene
Kaspersky, designer of the Kaspersky Anti-Virus (KAV).

3.2.3 Nearly Exact Identification

Nearly exact identification uses different methods to detect viruses more
accurately. One method is to use two strings, double string detection, instead
of just one. If both strings are found, the virus is nearly exact identified and
this makes disinfection more safe as the identified virus is less likely to be
a variant of the original – which needs a different disinfection method. The
use of bookmarks makes this technique much safer.

The use of checksum ranges selected from a virus body is another method
for nearly exact identification. A checksum of the bytes of a targeted area in
a virus body is calculated. This allows for longer areas of the virus body to
be selected for better accuracy, without overloading the antivirus database.

Nearly exact identification can also be achieved without any use of search
strings. Eugene Kaspersky in his KAV algorithm is not using any strings,
but rather makes use of two cryptographic checksums which are calculated
at two preset positions and length within an object.

3.2.4 Exact Identification

Exact identification uses as many ranges of constant bytes in the virus
body as necessary to calculate a checksum of all constant bits of the virus
body. The variable bytes of the virus body are eliminated and a map of
all constant bytes is created. This method is the only method to guarantee
precise identification of virus variants and is usually combined with first-
generation techniques. It can also differentiate precisely between different
variants of the same virus.

Exact identification has many benefits, but scanners which implement
this technique are slow. Also, it is very difficult to map the content ranges
of large computer viruses.

3.2.5 Heuristics Analysis

Heuristics analysis is useful when detecting new viruses. This technique
is also particularly useful for detecting macro viruses. For binary viruses

17

heuristic analysis can be very useful too, but it creates many false positives
which is a big problem for scanners. If an antivirus scanner creates many
false positives, users will loose their trust in the scanner and would not buy
it.

However, in many cases a heuristic analyzer can be very useful and can
also be used to detect variants of existing virus families. Heuristic analysis,
as described in [24], can be static or dynamic. Static analysis base the
analysis on file format and the code structure of the virus body. Dynamic
heuristics use emulators to detect suspicious behavior while the virus code
runs inside the emulator. More on emulation techniques in section 3.4.

The following are examples of heuristic flags, which describe particular
structural problems not likely to be found in PE files compiled with a 32-bit
compiler.

• Code Execution Starts in the Last Section

• Suspicious Section Characteristics

• Virtual Size Is Incorrect in PE Header

• Possible ”Gap” Between Sections

• Suspicious Code Redirection

• Suspicious Code Section Name

• Suspicious Imports from KERNEL32.DLL by Ordinal

• Multiple PE Headers

The previous heuristic tests come from [7].

3.3 Algorithmic Scanning Methods

There are cases when the standard algorithm of the virus scanner cannot
deal with a virus. In cases like this, a new detection code must be introduced
to implement a virus-specific detection algorithm. This method is called
algorithmic scanning. In [7], is suggested that the name algorithmic scanning
could be misleading and virus-specific detection would be more accurate.

Early scanners implemented algorithmic scanning by hard-coding detec-
tion routines that were released with the core engine code, but this technique
caused many problems like stability issues of the scanner. To solve this prob-
lem, researchers introduced virus scanning languages, which allowed seek
and read operations in scanned objects.

Modern scanners implement algorithmic scanning as a Java-like p-code
using virtual machines. This makes the detection routines highly portable

18

and cross-platform, however p-code execution is relatively slow compared
to real-time code execution. In the future it is expected that algorithmic
scanners will implement a JIT (jut-in-time) system to compile the p-code-
based detection routines to real architectural code [7].

3.3.1 Filtering

Filtering is a popular technique used widely in second-generation scan-
ners to increase the performance of the scanner regarding speed. A typical
virus only infects a subset of known objects. For example, macro viruses
only infect files or documents that are able to run macros, executable viruses
infect executable programs like EXE and COM, boot viruses only infect boot
areas, etc. This gives an advantage to the scanner as it can skip objects that
are not likely to be infected with a specific virus, thus reducing the number
of string matches the scanner must perform.

Because algorithmic scanning is slow and more expensive in terms of
performance, it relies heavily on filtering. Some examples of filters are: type
of the executable, the identifier flags of a virus in the header of an object,
and suspicious code section characteristics. However, some viruses give little
opportunities for filtering.

3.3.2 Static Decryptor Detection

Some viruses encrypt their code to avoid detection using search strings
(see section 4.1 on page 23). This technique causes problems to virus scan-
ners because the ranges of bytes that the scanner can use to identify the
virus are limited. Using decryptor detection specific to certain viruses is not
a very good method because it can be very slow and can also cause many
false positives and false negatives. What is more, because the virus body is
encrypted, this technique cannot guarantee disinfection.

However, decryptor detection can be relatively fast if combined with
efficient filtering. It can also be used to detect polymorphic viruses (see
section 4.3 on page 28) as even strong mutation engines use at least one
constant byte in their decryptor. Understanding advanced polymorphic en-
gines like MtE (see section 4.3.2 on page 29) can be a very tedious task, but
unfortunately sometimes this is the only way to detect such viruses.

3.3.3 X-RAY Scanning

This is another method to detect viruses that use encryption in order to
avoid detection. Instead of searching for the decryptor, this method attacks
the encryption of the virus code. X-raying uses a method relying on the
known plaintext on the virus body. It performs all single-encryption meth-
ods on selected areas of files, such as top, tail, and near entry-point code.

19

This way X-ray scanning can detect encrypted and advanced polymorphic
viruses using search strings.

X-raying has been used since the DOS days to to detect encrypted and
polymorphic viruses without having to emulate their decryption code. This
technique takes its name from the use of x-rays in medical science, it is used
to provide a “picture” of the virus, seeing through the layers of encryption
[25]. X-raying attacks certain weaknesses on the virus encryption algorithm.

A big advantage of this method is its ability to detect an infection with-
out having to locate the decryption code in the infected object. This is good
for detecting Entry-Point Obscuring (EPO)1 viruses, because these viruses
can bury the decryption loop and the decryption key so deeply in the in-
fected object that parsing the object to find the key is more costly than
X-raying the body of the virus [25].

The following simple X-raying example was given in [25]. One very
popular encryption method used in viruses is byte exclusive or XOR. Each
byte of the ciphertext is derived from one byte of the plaintext by XOR-ing
it with a fixed byte value between 0 and 255. The fixed byte value is the
encryption key. For example, the plaintext:

P = E8 00 00 5D

is encrypted with key 0x99, by XOR-ing each byte with the key. After
encryption P becomes:

C = (E8 XOR 00) (00 XOR 99) (00 XOR 99) (5D XOR 99)
C = 71 99 99 C4

We can determine if C could be an encryption of P in two steps. First, we
guess what the value of the key k must be according to the value of the first
byte of C. In our example, on the assumption that 71 = E8 XOR k, we guess
that k = 0x99. The next step is to verify that the rest of the ciphertext C
decrypts correctly by applying the guessed key k to the following bytes.

The downside of this technique is that it is relatively slow. Also, ad-
ditional slowdown is introduced when the start of the virus body cannot
be found at a fixed position and therefore the encryption methods must be
performed on a long area of the file. However, the complete decryption of
the virus body makes disinfection possible.

3.4 Code Emulation

This extremely powerful technique implements a virtual machine to sim-
ulate the CPU and memory management system and executes malicious code

1With the EPO method, some place in the victim body is patched by virus instructions
in the hope that this point will gain control somewhere [26].

20

inside the virtual machine. The malicious code cannot escape the virtual
machine of the scanner, thus this technique is relatively safe.

The code emulator mimics the instruction set of the CPU using virtual
registers and flags. The functionality of the operating system must also be
emulated to create a virtualized system that supports system APIs, files,
memory management, etc. The emulator mimics the execution of programs
and analyzes each instruction opcode one-by-one.

To detect polymorphic viruses, the scanner examines the content of the
virtual machines’ memory after a predefined number of iterations or when
any other stop conditions are met. If emulation is long enough, polymor-
phic viruses will decrypt themselves and present their real code in the virtual
machines’ memory. In order to decide when to stop the emulation, the scan-
ner uses the following methods: Tracking of active instructions, tracking of
decryptor using profiles, and stopping with break points. When the emula-
tion stops, the virus code is identified by using search strings or any other
detection method.

Code emulation scanning techniques depend on the iterations of the de-
cryptor loop. The method is fast enough for short decryptors, but for longer
decryption loops the decryption of the virus – even partially – can take more
than several minutes. The code of self-encrypting viruses can be decoded
easily using emulation; however, in situations that emulation is not the opti-
mal solution, the virus code can be decoded using a subprogram that applies
cryptanalysis to this code [27].

The are two types of virtual machine emulators, as described in [28]:
Hardware-bound emulators and pure software emulators. Hardware-bound
emulators rely on the real, underlying CPU to execute non-sensitive instruc-
tions at native speed. Hardware-bound emulators can be split into two sub-
categories, hardware-assisted and reduced privilege guest. The most widely
used type is reduced privilege guest emulators which include the popular
VMWare, VirtualPC and Parallels.

The second type of emulators is pure-software emulators, which work by
performing equivalent operations in software for any given CPU instruction.
Examples of this type of emulators include Hydra, Bochs, and QEMU. Anti-
virus software use a method of emulation which emulates both the CPU and
a portion of the operating system. Two examples of this type are Atlantis,
which supports DOS, Windows, and Linux, and Sandbox, which supports
only Windows.

All types of emulators are not designed to be completely transparent
from the system, so there are methods that can be used to detect them.
Some malicious software, in order to avoid detection, change their behavior
or refuse to run at all, if they detect the presence of an emulator. Methods
that can be used to detect the presence of each emulator mentioned in this
section, are described in [28].

21

3.4.1 Dynamic Decryptor Detection

Dynamic decryptor detection is a combination of emulation and decryp-
tor detection and it is useful for viruses with longer loops. It identifies the
possible entry-point of the virus in a virus-specific manner. Specific algo-
rithmic detection can check which areas of the virtual machines’ memory
have been changed during emulation, and if suspicious changes are found,
additional scanning can check which instructions were executed. These in-
structions can be profiled and the essential set of decryptor instructions can
be identified, which is then used to detect the virus. However, in order to
completely decrypt a virus, the emulator must run for a longer time, thus
making this technique not useful for disinfection.

In order to detect difficult polymorphic viruses a new dynamic technique
was introduced, which uses code optimization in an attempt to reduce the
polymorphic decryptor to a certain core set of instructions – removing the
junk. Junk instructions, such as NOPs and jumps that do not have any
effect in changing state, are removed. This makes emulation faster and
provides a profile of the decryptor for identification. However, this technique
cannot be applied in all cases. Complex polymorphic mutation engines like
MtE, produce code that cannot be optimized effectively. Furthermore, this
technique is not useful against viruses that apply multiple encryptions on
top of each other and dependent on one another.

22

Chapter 4

Advanced Code Evolution
Techniques

Malware writers are continually trying to invent new methods to defeat
antivirus software. Their worst enemies are the most commercially popular
antivirus products. Virus writers had to come up with ideas that made
first-generation virus scanners useless.

This chapter describes the most popular techniques designed to make
virus capable of evading detection from antivirus scanners. In particular,
virus encryption techniques, 32-bit oligomorphic, and 32-bit polymorphic
viruses are described. Although metamorphic viruses belong to this cat-
egory, they are not discussed in this chapter as chapter 5 is completely
devoted to them.

4.1 Encrypted Viruses

One of the first and easiest methods virus writers used to hide the func-
tionality of the virus code was encryption. Usually, an encrypted virus
consists of two parts; the decryptor and the encrypted main body of the
virus. The decryptor executes when an infected program runs, and decrypts
the virus body. Virus writers use encryption for the four following reasons,
as described in [29]:

1. To prevent static code analysis. Static analysis of code involves
disassembling the code and examining it for suspicious instructions or
blocks of code. An example of a suspicious instruction is INT 26H,
which performs absolute disk write, bypassing the file system. The use
of encryption can disguise suspicious instructions and prohibits the
use of static analysis programs that search for the previous suspicious
instructions.

23

2. To prolong the process of dissection. Although encryption makes
the analysis of the virus code more difficult, it usually does not add
more than a few minutes to the time required for analysis. However,
the Whale virus dedicates most of its code to encryption, in an attempt
to confound disassembly. Viruses designed to confound disassembly
are sometimes called armored viruses.

3. To prevent tampering. The use of encryption makes it more dif-
ficult for anyone to modify a virus and create new variants. Anyone
who wants to do this must first decrypt the virus, make any desired
changes and re-encrypt it again before reassembling it.

4. To evade detection. In early encrypted viruses, the decryptor was
identical in all infected files. This made detection based on the de-
cryptor alone an easy task. However, more sophisticated viruses use
self-modifying encryption which makes detection based on the decryp-
tor impossible, as no two samples of the same virus have any usable
search string in common.

A very simple encryption method was used by the Pretoria virus. The
virus XOR-ed each byte with a fixed value, which is equivalent to a simple
substitution algorithm. The XOR command is very practical for viruses be-
cause XOR-ing with the same key twice results in the initial value. This way
virus writers can avoid implementing two different algorithms for encryption
and decryption. The following code of the Pretoria virus comes from [29].

again:
lodsd ; get a byte to decrypt
xor al, 0a5h ; decrypt using key
stosb ; and store it back
dec bx ; finished ?
jnz again ; if not, continue

One of the first viruses that used encryption was the DOS virus Cascade.
Its algorithm was a little more sophisticated that the simple substitution
algorithm. It consists of XOR-ing each byte twice with variable values, one
of which depends on the length of the program [29]. The following decryptor
of the Cascade virus comes from [7].

ea si, Start ; position to decrypt (dynamically set)
mov sp, 0682 ; length of encrypted body (1666 bytes)

Decrypt:
xor [si],si ; decryption key/counter 1
xor [si],sp ; decryption key/counter 2

24

inc si ; increment one counter
dec sp ; decrement the other
jnz Decrypt ; loop until all bytes are decrypted

Start: ; Encrypted/Decrypted Virus Body

Although such encryption is considered cryptographically weak, early
antivirus programs could detect them only by detecting the decryptor using
search strings. The problem with this method is that by detecting a virus
based on its decryptor alone, the algorithm is unable to identify the variant
or the virus, as several viruses with different functionality could implement
the same decryptor. Antivirus programs that use this method would be
unable to repair infected files, and would also produce false positives as some
non-viruses, such as antidebug wrappers, might use a similar decryptor [7].

The previous code evolution method was also used in 32-bit Windows
viruses, such as Win95/Mad and Win95/Zombie. Such viruses can be de-
tected without trying to decrypt the virus body, but such detection is not
exact. Fortunately, the repair code can decrypt the encrypted virus body
and deal with minor variants easily [7].

The following strategies, which are used to make encryption and decryp-
tion more complicated, are described in [7]:

• The virus writer can change the direction of the loop and can support
forward and backward loops.

• Some viruses, such as RDA.Fighter, do not store the encryption key in
the virus body and use exhaustive key search to decrypt themselves.
This is sometimes called the RDA (random decryption algorithm).
Such viruses are much harder to detect.

• Other viruses make use of strong encryption algorithms to encrypt
their body. The IDEA family of viruses uses the IDEA cipher but
because the viruses carry the decryption key, the encryption cannot be
considered strong. However, the disinfection of such viruses is difficult
because the antivirus has to re-implement the encryption algorithm.

• Some computer worms used the Microsoft crypto API which encrypts
DLLs on the system using a secret/public key pair generated on the fly.
Examples of malware making use of the crypto API is the Win32/Crypto
and the Win32/Qint@mm.

• In some viruses, such as Win95/Resur and Win95/Silcer, the decryp-
tor in not part of the virus code. They force the Windows Loader to
relocate the infected program images when they are loaded into mem-
ory. The virus injects special relocations for the purpose of decryption

25

and does this so the act of relocating the images decrypts the virus
body.

• The Cheeba virus kept the encryption key external from the virus
body. Its payload was encrypted using a filename and only when the
virus accessed the filename would it decrypt its body.

• Virus writers can use different ways to generate the encryption key.
Some ways are constant, random but fixed, sliding, and shifting.

• Some viruses such as Tequila, used the decryptors’ code functions as
a decryption key. If the code of the decryptor is modified with a
debugger, the previous method can cause problems. The technique can
also cause problems to emulators that use code optimization techniques
to run decryptors more efficiently.

• A very important factor for encrypted viruses is the randomness of
the encryption key. Some viruses generate new keys only once per day
while others generate new keys every time they infect an object. To
select the seed of randomness viruses can use timer ticks, CMOS time
and date, CRC32, etc.

• The virus writer can choose to decrypt the code in different locations.
The most common technique is to decrypt the code at the location
of the encrypted virus body. The problem with this method is that
the encrypted data must be writable in memory, which depends on
the operating system. Another method is to build the decrypted virus
body on the stack. This way the encrypted data does not need to be
writable. A third method is for the virus to allocate memory for the
decrypted code and data. This technique has some disadvantages as
non-encrypted code needs to allocate memory before the decryptor.

4.2 Oligomorphic Viruses

As long as the code of the decryptor is long enough and unique enough
the detection of an encrypted virus is a simple task for the antivirus soft-
ware. In order to challenge the antivirus software, virus writers invented
new techniques to create mutated decryptors.

Oligomorphic viruses, as described in [7], change their decryptors in new
generations, unlike encrypted viruses. One very simple technique is to have
several decryptors instead of one. The Whale virus was the first virus to use
this technique. It carried a few dozens of different decryptors and picked
one randomly.

Win95/Memorial had the ability to built 96 different decryptor patterns,
thus making detection based on the decryptor alone not practical. Most

26

antivirus software tried to detect the virus by dynamic decryption of the
virus body [7]. Memorial was the first Windows 95 virus with oligomorphic
properties and was the first step towards Windows 95 polymorphism [30].
The code below is an example decryptor of the Memorial virus published in
[7]:

mov ebp,00405000h ; select base
mov ecx,0550h ; this many bytes
lea esi,[ebp+0000002E] ; offset of "Start"
add ecx,[ebp+00000029] ; plus this many bytes
mov al,[ebp+0000002D] ; pick the first key

Decrypt:
nop ; junk
nop ; junk
xor [esi],al ; decrypt a byte
inc esi ; next byte
nop ; junk
inc al ; slide the key
dec ecx ; are there any more bytes to decrypt?
jnz Decrypt ; until all bytes are decrypted
jmp Start ; decryption done, execute body

; Data area

Start:
; encrypted/decrypted virus body

The first virus to use self-modifying encryption was Datacrime II. The
decryption/encryption routine of the virus modified itself in order to prevent
tracing through the decryption process using a debugger. It could also be
described as an armored feature to prevent disassembly.

again:
mov al,cs:[bx] ; get next byte to be decrypted
mov cs:[di],22h ; change the next instruction from xor al,dl to and al,dl
xor al,dl ; perform the decryption
ror dl,1 ; rotate the key
mov cs:[bx],al ; store the decrypted byte
inc bx ; increment counter
mov cs:[di],32h ; change the instruction back to an xor instruction
loop again ; until all bytes have been decrypted

The encryption method used in this virus is simple. Each byte is XOR-
ed with a key which is rotated by one bit each time. All information about
Datacrime II comes from [29].

27

4.3 Polymorphic Viruses

Polymorphism is the next step virus writers took to challenge antivirus
software. The term polymorphic comes from the Greek words “poly,” which
means many, and “morhi,” which means form. A polymorphic virus is a
kind of virus that can take many forms. Polymorphic viruses can mutate
their decryptors to a high number of different instances that take millions of
different forms [7]. They use their mutation engine to create a new decryp-
tion routine each time they infect a program. The new decryption routine
would have exactly the same functionality, but the sequence of instructions
could be completely different [31].

The mutation engine also generates an encryption routine to encrypt
the static code of the virus before it infects a new file. Then the virus
appends the new decryption routine together with the encrypted virus body
onto the targeted file. Since the virus body is encrypted and the decryption
routine is different for each infection, antivirus scanners cannot detect the
virus by using search strings. Mutation engines are very complex programs
– usually far more sophisticated than their accompanying viruses. Some
of the more sophisticated mutation engines can generate several billions of
different decryption routines [31].

4.3.1 The 1260 virus

The 1260 virus was the first known polymorphic virus. It used an en-
cryption routine which represents a significant development in encryption
techniques. The encryption routine inserts various one-byte and two-byte
garbage instructions between the functional instructions. The garbage in-
structions have no effect on the decryption process, but make the extraction
of a search string virtually impossible [32]. Some of the garbage instructions
used by 1260 include:

nop
dec bx
xor bx, cx
inc si
clc

The virus randomly selects a variable number of the garbage instruc-
tions and inserts them between the actual decoding instructions. It can also
change the order of the decoding instructions, without affecting the execu-
tion of the program. The result is that the longest sequence of bytes present
in all infected programs is only three bytes long, which is too short for the
extraction of search strings [32].

28

4.3.2 The Dark Avenger Mutation Engine (MtE)

The Mutation Engine or MtE was the first polymorphic engine and was
released in 1991. It was written by the Bulgarian virus writer nicknamed
Dark Avenger and was released as a help to novice virus writers to use it
with their own viruses. The following description of MtE comes from [7].

MtE makes a function call to the mutation engine function and pass
control parameters in predefined registers. The engine builds a polymorphic
shell around the simple virus inside it. The parameters of the engine include:

• A work segment

• A pointer to the code to encrypt

• Length of the virus body

• Base of the decryptor

• Entry-point address of the host

• Target location of encrypted code

• Size of decryptor

• Bit field of registers to use

The output of MtE is a polymorphic decryption routine with an en-
crypted virus body in the supplied buffer. The following is an example
decryptor generated by MtE [7].

mov bp,A16C ; This Block initializes BP

; to "Start"-delta
mov cl,03 ; (delta is 0x0D2B in this example)
ror bp,cl
mov cx,bp
mov bp,856E
or bp,740F
mov si,bp
mov bp,3B92
add bp,si
xor bp,cx
sub bp,B10C ; Huh ... finally BP is set, but remains an

; obfuscated pointer to encrypted body

29

Decrypt:
mov bx,[bp+0D2B] ; pick next word

; (first time at "Start")
add bx,9D64 ; decrypt it
xchg [bp+0D2B],bx ; put decrypted value to place
mov bx,8F31 ; this block increments BP by 2
sub bx,bp
mov bp,8F33
sub bp,bx ; and controls the length of decryption
jnz Decrypt ; are all bytes decrypted?

Start:
; encrypted/decrypted virus body

There in only one constant byte in an MtE decryptor, followed by a
negative offset, but it is placed at a variable location each time. Fortunately,
MtE had a couple of minor limitations that enabled detection of the virus
reliably using an instruction size disassembler and a state machine. However,
MtE kept most antivirus companies to the workbench to introduce a virtual
machine for the use of the scanning engine.

MtE was followed by other similar engines and today hundreds of poly-
morphic engines are known – most of them only used to create a couple
of viruses. Although mutation engines create different looking viruses each
time, there is no true randomness and a reliable signature can be calculated
even in random-looking code [8].

4.3.3 Polymorphic Viruses for Windows

The first polymorphic viruses written for the 32-bit Windows environ-
ment, were Win95/HPS and Win95/Marburg – both written by the Spanish
virus writer GriYo in 1998.

HPSs’ polymorphic engine is very powerful and advanced. It supports
subroutines using CALL/RET instructions and conditional jumps with non-
zero displacement. The polymorphic engine has random byte-based blocks
inserted between the generated code chains of the decryptor. The full de-
cryptor is built only during the first initialization phase, thus an infected PC
must be rebooted in order for the virus to create a new decryptor. This cause
problems to antivirus vendors because they cannot test their scanners’ de-
tection rate efficiently. The decryptor consists of Intel 386 instructions and
the virus body is encrypted and decrypted using different methods, includ-
ing XOR/NOT and INC/DEC/SUB/ADD instructions with 8, 16, or 32 -bit
keys, respectively. All information about HPS were taken from [7].

Marburg is probably the first polymorphic Windows 9x virus and it is
written in assembler. Its polymorphic engine is similar to that of HPS, but it

30

does not hook system functions; instead, Marburg is a direct action infector.
Marburg utilizes a slow polymorphic replication mechanism and the infection
method differs slightly in some files. When there are no relocations for the
first 255 bytes from the entry-point, the virus places a jump instruction in
the code at the entry-point of the host, then builds a random garbage code
block first and puts the jump to the polymorphic decryptor at the end of
it. The polymorphic decryptor then decrypts the virus body that proceeds.
The above description of Marburg was published in [33].

The code below is an illustration of a Win95/Marburg decryptor in-
stance, which was published in [7] along with its description:

Start:
; Encrypted/Decrypted Virus body is placed here

Routine-6:
dec esi ; decrement loop counter
ret

Routine-3:
mov esi,439FE661h ; set loop counter in ESI
ret

Routine-4:
xor byte ptr [edi],6F ; decrypt with a constant byte
ret

Routine-5:
add edi,0001h ; point to next byte to decrypt
ret

Decryptor_Start:
call Routine-1 ; set EDI to "Start"
call Routine-3 ; set loop counter

Decrypt:
call Routine-4 ; decrypt
call Routine-5 ; get next
call Routine-6 ; decrement loop register
cmp esi,439FD271h ; is everything decrypted?
jnz Decrypt ; not yet, continue to decrypt
jmp Start ; jump to decrypted start

Routine-1:
call Routine-2 ; Call to POP trick!

31

Routine-2:
pop edi
sub edi,143Ah ; EDI points to "Start"
ret

The polymorphic decryptor of the virus is placed after the encrypted
virus body and it is split between small parts of code routines, which can
appear in mixed order. The result of the above decryptor is millions of
possible code patterns filled with random garbage instruction between the
parts of code.

Some polymorphic viruses, such as Win95/Coke, use multiple layers of
encryption. Other more sophisticated polymorphic engines use an RDA-
based decryptor that implements a brute-force attack against its constant
– but variably encrypted – virus body. Manual analysis of such viruses can
be a daunting task. However, all polymorphic viruses have a constant body
which must be decrypted before the virus can function. Advanced methods
exists that can decrypt the virus body and identify the virus [7].

32

Chapter 5

Metamorphic Viruses

This chapter explains in detail what a metamorphic virus is and describes
in detail some of the techniques these viruses use to avoid detection. Next,
Win95/Zmist and {Win32,Linux}/Simile, the two most advanced metamor-
phic viruses ever created are described in some more detail. This chapter
concludes by summarizing the computer virus evolution process, from the
simple virus to the metamorphic virus.

5.1 Introduction

Creating a polymorphic virus is a very complex and challenging task for
virus writers. They often waste months on creating a new polymorphic virus,
a virus that can take an antivirus vendor just a few hours to detect. The
problem with polymorphic viruses is that they eventually have to decrypt
themselves and present their constant body in memory in order to function.
Advanced detection techniques can wait for the virus to decrypt its self and
then detect it reliably.

The first known 32-bit virus that did not use a polymorphic decryptor
was the Win32/Apparition virus. As described in [7], the virus carries its
source code around and when it finds a compiler installed on a machine, it
inserts and removes garbage code into its source code and re-compiles itself.
This enables new generations of the virus to look completely different from
the previous. This kind of virus is called metamorphic.

Figure 5.1 on the next page, shows the comparison of three kinds of
viruses in a very simplified way. In basic viruses, the entry point code is
modified to give execution control to the virus code. Detection is trivial
using search strings. Polymorphic viruses apply encryption to their body to
prevent detection using search strings. Some advanced metamorphic viruses
re-program themselves with little pieces of viral code scattered and with
garbage code in between [34]. Not all metamorphic viruses are capable of
doing this, though.

33

Figure 5.1: Three kinds of viruses (from [34])

5.2 The Metamorphic Virus

Metamorphic viruses transform their code as they propagate, thus evad-
ing detection by static signature-based virus scanners and have the poten-
tial to lead to a breed of malicious programs that are virtually undetectable
statistically [35]. These viruses also use code obfuscation techniques to chal-
lenge deeper static analysis and can also beat dynamic analyzers, such as
emulators, by altering their behavior when they detect that they are exe-
cuting under a controlled environment [36].

The main goal of metamorphism is to change the appearance of the virus
while keeping its functionality. To achieve this, metamorphic viruses use
several metamorphic transformations, such as register usage exchange, code
permutation, code expansion, code shrinking, and garbage code insertion
[35].

Metamorphic viruses, as described in [7], do not have a decryptor, nei-
ther a constant virus body like polymorphic viruses do. However, they are
able to create new generation that look different. They do not use a data
area filled with string constants but have one single-code body that carries
data as code. Metamorphic viruses usually avoid creating new generations
that look very similar to their parents. Figure 5.2 on the following page,
which was given in [23], illustrates the changes in different generations of a
metamorphic virus. As mentioned before, the shape changes but the func-
tionality remains the same.

34

Figure 5.2: Metamorphic virus generations (from [23])

5.2.1 A formal definition

The following formal definition of a metamorphic virus was given in [37].
Let ΦP (d, p) denote a function computed by a computer program P in the
running environment (d,p) where d represents data and p represents pro-
grams stored on computers. D(d,p) and S(p) are two recursive functions.
T(d,p) is called injury condition (trigger) and I(d,p) is called infection con-
dition.

Definition 4. The pair (υ, υ′) of two different total recursive functions υ
and υ′ is called a metamorphic virus if for all χ, (υ,υ′) satisfies

Φυ(χ)(d, p) =

D(d, p) , if T (d, p)

Φχ(d, p[υ′(S(p))]) , if I(d, p)
Phiχ(d, p) , otherwise

and

Φυ′(χ)(d, p) =

D′(d, p) , if T ′(d, p)

Φχ(d, p[υ′(S′(p))]) , if I ′(d, p)
Phiχ(d, p) , otherwise

where T(d,p) (resp.,I(d,p), D(d,p), S(d,p)) is different from T ′(d, p)
(resp.,I ′(d, p), D′(d, p), S′(d, p)).

A metamorphic virus (υ, υ′) seems to combine two different viruses, υ and
υ′. However, when υ infects a program, the program is infected by υ′, and

35

vise versa. The main difference between a metamorphic and a polymorphic
virus is that each form of a polymorphic virus has the same kernel, but each
each component of a metamorphic virus has its own kernel [23].

5.2.2 Anatomy of a Metamorphic Virus

This model of the anatomy of a prototypical closed-world1, binary-transforming2

metamorphic engine presented in this section, along with its explanation,
was published by Walenstein, Mathur, Chouchane, and Lakhotia in [38].
The anatomy of a metamorphic engine identifies functional units, which are
conceptual units of tasks that must be performed by the engine, but are not
required to be implemented as modules or functions. Figure 5.3, illustrates
the units of this model.

Figure 5.3: Anatomy of a metamorphic engine (from [38])

Locate own code. Each time a metamorphic engine is called to transform
some code, it must be able to locate. Metamorphic viruses which transform
both their own code and the code of their host, must be able to locate their
own code in the new variants.

Decode. Next, the engine needs to decode the information required to
perform the transformations. In order to transform itself, the engine must
have some representation of itself so that it knows how to make the trans-
formations. The metamorphic engine may also need to decode other types
of information required for analysis or transformation. This information can
be encoded in the virus body, in the data segments, or in the code itself.
Unpacking or decrypting the whole executable is not a responsibility of this
unit.

1Malware that are self contained.
2Malware that transform the binary image that is executed.

36

Analyze. In order for the metamorphic transformations to work correctly,
certain information must be available. For some transformations to be per-
formed correctly, the engine must have register liveness information avail-
able. If such information is not available, the metamorphic engine itself
must construct it. Register liveness can be constructed, in part, by a def-
use analysis. A piece of information that is frequently required for analysis
and transformation, is the control flow graph (CFG) of the program. For
example, it can be used to rewrite the control flow logic of a program if a
transformation expands the code.

Transform. This unit is responsible for transforming the code into equiv-
alent code. This is done usually by replacing instruction blocks in the code
with other equivalent. More details on transformations are given later in
this chapter.

Attach. The last step that the metamorphic engine has to take, is to
attach the new generation of the virus to a new host file.

The units are ordered according to the direction of information flow,
which is not necessarily the execution order. The feedback loop shows that
the output of a metamorphic engine may become its input in the next gen-
eration. Lakhotia and Kapoor characterize this loop as the Achilles’ heel of
a metamorphic virus [36]. More on this in Chapter 6.

5.2.3 The Metamorphic Virus According to a Virus Writer

The following description is given by the virus writer Benny, member of
29A3. The description appeared in an article in 29A magazine, issue 4. It
is a description of what a metamorphic virus should be, according to a real
virus writer. It also demonstrates how challenging is the task of creating a
metamorphic virus.

Benny says that coding a metamorphic virus is really hard. He believes
that every good metamorphic engine should contain:

1. Internal disassembler

2. Opcode shrinker

3. Opcode expander

4. Opcode swapper

5. Relocator/recalculator

6. Garbager
3A group of notorious virus writers. Former members of 29A include Zombie, Vecna,

and “The Mental Driller.”

37

7. Cleaner

The internal disassembler will disassemble the code, instruction by in-
struction. The opcode shrinker will shrink or optimize two, or more instruc-
tions to one. The opcode expander will expand one instruction to more than
one. The opcode swapper will swap two, or more instructions. The reloca-
tor/recalculator will relocate or recalculate all relative references, such as
jumps, calls, and pointers. The garbager will insert one, or more do-nothing
instructions between real code. The cleaner will clean garbage code inserted
by the garbager.

According to Benny, the metamorphic engine should know every opcode
and should be able to process instructions concurrently to provide shrinking
and swapping, something which is much harder than expanding. Also, the
re-calculator for all relative references, would be very hard to code. Jumps
and calls to known code will be easy, but jumps and calls to unknown (not yet
mutated) code will be harder. The virus writer would probably need to mark
the opcode and redundantly check if jumps and calls can be recalculated.
The relocation of pointers will be solved by user defined tables, and as Benny
says, it is the ugliest effect as the virus writer will have to mark down all
pointers. Also, the garbager should only use a limited set of instructions,
because the garbage shouldn’t affect the other instructions. Finally, the
opcode swapper should be able to analyze every instruction and test if its
action will not effect the second instruction.

Benny continues by saying that there are still more problems and limi-
tations. The virus writer will not be able to mix variables with code, and
they will need to keep somewhere some original virus code or recalculate all
values in the pointer table at run-time. Benny claims that he does not know
how to do this. His last words should give the point:

“Yeah, I said it will be hard. And have I ever said to you, that
the tiniest metas (metamorphic engines) are about 20KB?”

5.3 Metamorphic Techniques

To avoid detection, metamorphic viruses use several different techniques
to evolve their code into new generations that look completely different, but
have exactly the same functionality. This sections describes in detail many
of these techniques.

5.3.1 Garbage Code Insertion

Garbage code (or junk code) insertion is a simple technique used by
many metamorphic and polymorphic viruses to evolve their code. The idea
behind this technique is to make their code look different so that no usable

38

hexadecimal search string can be extracted. The instructions inserted into
the code are called garbage because they have no impact on the functionality
of the code.

The Win32/Evol virus, which appeared in July 2000, implemented a
metamorphic engine that was able to run on any major Win32 platform.
One of the functionalities of Evols’ metamorphic engine was to insert garbage
between core instructions. The following piece of code is an early generation
of Evol:

C7060F000055 mov [esi], 5500000Fh
C746048BEC5151 mov [esi+0004], 5151EC8Bh

The next piece of code is a later generation of Evol:

BF0F00055 mov edi, 5500000Fh
893E mov [esi], edi
5F pop edi ; garbage
52 push edx ; garbage
B640 mov dh, 40 ; garbage
BA8BEC5151 mov edx, 5151EC8Bh
53 push ebx ; garbage
8BDA mov ebx, edx
895E04 mov [esi+0004}, ebx

The previous two pieces of code, which were published in [39], look differ-
ent but have the same exact functionality. The instructions commented as
garbage have no impact on the functionality of the code. It is clear that no
usable hexadecimal string can be extracted from the previous two instances
of the Evol virus.

A more advanced form of garbage code insertion is performed by the
Win95/Bistro virus, which appeared in October 2000. A routine which is
activated on random, creates a “do-nothing” code block at the entry-point
of the virus body. When is activated the code block can generate millions
of iterations to challenge the speed of the emulator [39].

5.3.2 Register usage exchange

Another simple technique used by metamorphic viruses is register usage
exchange. This method was used by the Win95/Regswap virus, which was
created by the virus writer Vecna and released in 1998. Different generations
of the virus will use the same code but with different registers. The following
two pieces of code belong to two different generations of the Regswap virus:

39

5A pop edx
BF04000000 mov edi,0004h
8BF5 mov esi,ebp
B80C000000 mov eax,000Ch
81C288000000 add edx,0088h
8B1A mov ebx,[edx]
899C8618110000 mov [esi+eax*4+00001118],ebx

58 pop eax
BB04000000 mov ebx,0004h
8BD5 mov edx,ebp
BF0C000000 mov edi,000Ch
81C088000000 add eax,0088h
8B30 mov esi,[eax]
89B4BA18110000 mov [edx+edi*4+00001118],esi

It is obvious that the complexity of the virus is not high and the different
generations have enough common area to enable detection using wildcard
strings. However, many antivirus scanners do not support wildcard strings,
thus a virus like this might need algorithmic detection. The information
about Regswap and register usage exchange comes from [23].

5.3.3 Permutation Techniques

The Win32/Ghost and the Win95/Zperm viruses introduced a new level
of metamorphism. Although the virus code is constant, metamorphosis is
achieved by dividing the code into frames, and then position the frames
randomly and connect them by branch instructions to maintain the pro-
cess flow. The branch instructions could be simple jump instructions or a
complex transfer of control, such as “push val32; ret.” The flow of control
always remains the same [40].

The Win32/Ghost virus, which was discovered in May 2000, had the
ability to re-order its subroutines from generation to generation. If the
number of subroutines is n, then the number of different virus generations is
n!. The Win32/Ghost had 10 subroutines, thus there were 3628800 different
possible virus generations. Figure 5.4 on the following page, illustrates how
a virus re-orders its modules. BadBoy was a DOS virus that also used the
same permutation technique. It had 8 subroutines so the number of possible
generations was 40320.

5.3.4 Insertion of Jump Instructions

Another method used by some metamorphic viruses to create new gen-
erations is inserting jump instructions within its code. The Win95/Zperm
virus is a very good example of this technique. It appeared in June and

40

Figure 5.4: Illustration of module re-ordering (from [41])

September of 2000 and was written by the same person who created the
Win95/Zmorph [23]. The virus inserts and removes jump instructions within
its code and each jump instruction will point to a new instruction of the
virus.

Zperm is permutating its own code each time it infects a Portable Exe-
cutable (PE) file. In a first generation the virus may look like this:

instruction 1 ; entry point
instruction 2

...

instruction n

In later generations the virus changes itself by inserting a random number
of jump instructions. A later generation might look like this:

instruction 2
jmp instruction 3
instruction 1 ; entry point
jmp instruction 2
instruction 3
jmp instruction n

The previous description was published in [39]. A good illustration of
this is given by figure 5.5 on the next page. Zperm never generates a constant
body anywhere, not even in memory, so detection of the virus using search
strings is virtually impossible.

41

Figure 5.5: Example of Zperm inserting jumps into its code (from [23])

5.3.5 Instruction Replacement

Some metamorphic viruses are able to replace some of their instruc-
tions with other equivalent instructions. In addition to jump insertions,
Win95/Zperm had the ability to perform instruction replacement. For ex-
ample, the virus could replace the instruction “xor eax, eax” with the in-
struction “sub eax, eax.” Both instructions perform the same function –
zeroing the content of the eax register – but have a different opcode [23].

Another example of instruction replacement is the Win95/Zmist virus.
The types of instruction replacement that can be performed by Zmist, as
described in [42], include:

• reversing of branch conditions

• register moves replaced by push/pop sequences

• alternative opcode encoding

• xor/sub and or/test interchanging

Win95/Bistro performs similar replacements also. Here is the original
code of a target before processing by Bistro:

55 push ebp
8BEC mov ebp, esp
8B7608 mov esi, dword ptr [ebp + 08]
85F6 test esi, esi
743B je 401045
8B7E0C mov edi, dword ptr [ebp + 0c]
09FF or edi, edi
7434 je 401045
31D2 xor edx, edx

42

And after:

55 push ebp
54 push esp ; register move replaced by push/pop
5D pop ebp ; register move replaced by push/pop
8B7608 mov esi, dword ptr [ebp + 08]
09F6 or esi, esi ; test/or interchange
743B je 401045
8B7E0C mov edi, dword ptr [ebp + 0c]
85FF test edi, edi ; test/or interchange
7434 je 401045
28D2 sub edx, edx ; xor/sub interchange

The previous example code comes from [7].

5.3.6 Host Code Mutation

The Win95/Bistro virus not only mutates itself in new generations, but
it also mutates the code of its host. This way the virus can generate new
viruses and worms. To do this, the virus uses a randomly executed code-
morphing routine. Also, because the entry-point code of the application
could be different, disinfection cannot be done perfectly.

The code-morphing routine of Bistro uses techniques previously described
in this section. Code permutations of worms and viruses, as done by Bistro,
would be very difficult to deal with. If similar morphing techniques would
be implemented by a 32-bit worm, a major problem would occur as new
mutations of old viruses and worms would be created endlessly. Information
about Win95/Bistro and host code mutation were taken from [39].

5.3.7 Code Integration

The Win95/Zmist virus implemented an even more sophisticated tech-
nique. This technique, named code integration, has never been seen in any
previous virus.

Zmists’ engine can decompile Portable Executable (PE) files to their
smallest elements, requiring 32MB of memory. Then the virus moves code
blocks out of the way, inserts itself into the code, re-generates code and
data references, and rebuilds the executable [23]. This way the virus can
integrate itself seamlessly to the code of its target, making it very hard to
detect and even harder to repair. More details about Win95/Zmist can be
found in section 5.4.1 on the following page.

43

5.4 Advanced Metamorphic Viruses

This section describes in more detail two of the most advanced metamor-
phic viruses, Win95/Zmist and {Win32, Linux}/Simile. Zmist was created
by the virus writer Z0mbie and released in 2000. Simile – named MetaPHOR
by its creator – was created by “The Mental Driller” and was released in
2002.

5.4.1 Win95/Zmist

The Russian virus writer Z0mbie released Win95/Zmist in 2000, along
with his “Total Zombification” magazine. Z0mbie is the author of many
other polymorphic and metamorphic viruses, including Win95/Zmorph and
Win95/Zperm. All information about Zmist in this section, were taken from
[42].

At the time of its release, Zmist was one of the most complex viruses.
Peter Ferrie and Peter Szor went as far as to call Zmist “one of the most com-
plex binary viruses ever written.” Zmist is a Entry-Point Obscuring (EPO)
virus that is metamorphic. In addition, it randomly uses a polymorphic
decryptor.

As described in section 5.3.7 on the previous page, Zmist supports the
unique technique called code integration. Also, it occasionally inserts jump
instructions after every single instruction of the code section, each pointing
to the next instruction. The fact that these extremely modified applications
work – from generation to generation – was not expected by anyone, not
even by Z0mbie. In [42] it is mentioned that “due to its extreme camouflage,
Zmist is clearly the perfect anti-heuristics virus.”

Initialization

Zmist merges itself with the existing code of the host and becomes part
of the instruction flow. It does not change the entry-point of its target.
Because the virus code is inserted in random locations, sometimes the virus
never receives control. If it does execute, it immediately launches the host as
a separate process and hides the original process until the infection routine
completes. In order to hide the original process, the RegisterServicePro-
cess() API must be supported on the current platform. Concurrently, the
virus begins to search for new targets.

Direct Action Infection

After Zmist launches the host process, it checks if there are at least 16MB
of physical memory installed and that the virus is not running in console
mode. If the checks pass, it allocates several memory blocks, including a
32MB memory block for its engine, Mistfall. Then it permutates its body

44

and begins a recursive search for PE .EXE files. The search takes place in
the Windows directory and all subdirectories, then the directories referred
to by the PATH environment variable, and finally all fixed or remote drives
from A to Z.

Permutation

The permutation is done only once per machine infection. It includes
instruction replacement, register moves replaced by push/pop sequences, al-
ternative opcode encoding, xor/sub and or/test interchanging, and garbage
instruction generation. Zmists’ engine, Real Permutation Engine (RPME),
was used in Win95/Zperm virus too.

Infection of Portable Executable files

For a file to be infectable it must:

• be smaller than 448KB,

• begin with “MZ”,

• be a PE file, and

• be not previously infected

As a marker for infected files the virus uses “Z” at offset 0x1C in the
MZ header. The virus reads the file into memory and chooses one out of
three infection types. There is a one in ten chance that the virus will only
insert jump instructions between existing instructions, and will not infect
the file. With the same probability the virus will infect the file with an unen-
crypted copy of itself. Otherwise, it will infect the file by a polymorphically
encrypted copy.

Structured Exception Handling protects the infection process from crash-
ing due to errors. After rebuilding the executable, the virus erases the orig-
inal file and replaces it with the infected one. In case of errors during the
file creation, the original file is lost and nothing replaces it. The polymor-
phic decryptor consists of islands of code that are integrated into random
locations throughout the host code section, which are linked together with
jumps. The decryptor integration uses exactly the same method as the virus
body integration.

For decrypting the virus code, Zmist uses an anti-heuristics trick. Instead
of making the section writable in order to alter its code directly, the host is
required to have – as one of the first three sections – a section containing
writable and initialized data. The virtual size of this section is increased by
32KB, which allows the virus to decrypt code directly into the data sections
and transfer control to there. If the virus cannot find such a section, it infects

45

the file without using encryption. There are four ways for the decryptor to
receive control:

• via absolute indirect call (0xFF 0x15)

• a relative call (0xE8)

• a relative jmp (0xE9)

• as part of the instruction flow

For the first three methods, control will be transferred soon after the
entry point. For the last method, the virus inserts an island of the decryptor
code into the middle of a subroutine, somewhere in the code. All used
registers are saved before decryption and restored afterwards, so that the
original code will not change its behavior.

If the virus use encryption, the code is encrypted with ADD/ SUB/
XOR using a random key. Then the key is modified on each iteration by
ADD/ SUB/ XOR using a second random key. Zmist uses the Executable
Trash Generator (ETG) to produce and add various garbage instructions
in between the decryption instructions, using a random number of registers
and a random choice of loop instructions.

Code Integration

In order to distinguish between offsets and constants, the integration
algorithm requires that the host has fix-ups. The algorithm also requires
that the name of each section in the host is one of the following: CODE,
DATA, AUTO, BSS, TLS, .bss, .tls, .CTR, .INIT, .text, .data, .rsrc, .re-
loc, .idata, .rdata, .edata, .debug, and DGROUP. The most common com-
pilers and assemblers use these section names. The strings are encrypted,
thus these names are not visible in the virus code.

The virus allocates a block of memory which is equivalent to the size
of the hosts’ memory image, and each section is loaded into this array at
the sections’ relative virtual address. In order to rebuilt the executable,
the virus saves the locations of every interesting virtual address and then
begins the instruction parsing. When an instruction is inserted into the code
all following code and data references must be updated. If some of these
references are branch destinations, sometimes the size of them will increase
as a result of the modification. When this occurs, more code and data
references must be updated, some of which might be branch destinations,
and the cycle repeats. However, this regression is not infinite.

During the instruction parsing, the type and length of each instruction
is identified and the types are described using flags. In cases where an
instruction cannot be resolved in an unambiguous manner to either code
or data, the virus does not infect the file. After the parsing is completed,

46

the virus calls the mutation engine. The engine inserts jump instructions
after every instruction, or generates a decryptor and inserts the islands into
the file. Then the virus rebuilt the file, updates the relocation information,
re-calculates the offsets and restores the file checksum. Any overlay data
appended to the original file are copied to the new file.

5.4.2 {Win32, Linux}/Simile

In March 2002, a virus writer who calls himself “The Mental Driller,”
released the Win32/Simile virus. The particular virus writer had challenged
the antivirus community in the past with some of his previous creations,
such as Win95/Drill. Unless explicitly stated, all information in this section
comes from [43].

Simile, which is even more complex than Zmist, is approximately 14,000
lines of assembly code. Its extremely powerful and complex metamorphic
engine takes up about 90% of the virus code. His creator named the virus
“MetaPHOR,” which stands for Metaphoric Permutating High-Obfuscating
Re-assembler. There are four known variants of the virus, three of them
(variants A, B, and D) written by the original author, and one (variant C)
written by an unknown author [7].

Simile is very obfuscated and very difficult to understand. It attacks
the disassembling, debugging, and emulation techniques. It also challenges
the standard evaluation-based techniques for virus analysis. Just like Zmist,
Simile makes use of EPO techniques.

Replication Routine

Similes’ replication routine is basic, using a direct action replication
mechanism that attacks PE files on the local machine and the network. The
virus gives much more emphasis on its, – unusually complex – metamorphic
engine.

EPO Mechanism

The virus does not alter the entry point of the file. Rather, it searches for
and replaces all of the possible patterns of certain call instructions, which
reference ExitProcess() API calls, to point to the beginning of the virus.
In order to further confuse the location of the virus body, in some cases
the body is placed together with the polymorphic decryptor at the same
location, while in other cases the polymorphic decryptor is placed at the
end of the code and the virus body is placed at another location.

47

Polymorphic Decryptor

When an infected program is executed and the instruction flow reaches
one of the hooks that the virus has placed in the code section, control is
transferred to a polymorphic decryptor, whose location is variable. If the
virus body is encrypted, the decryptor decodes it; otherwise, it directly
copies it. The decryptor allocates a block of memory of about 3.5MB, then
decrypts the encrypted virus body into it. In order to do this, it processes the
encrypted data in a seemingly random order, thus it avoids triggering some
of the decryption-loop recognition heuristics. This method is very unusual.
The virus writer calls this method “Pseudo-Random Index Decryption,” and
it relies on the use of a family of functions that have interesting arithmetic
properties modulo 2n.

The size and shape of the decryptor varies greatly from generation to
generation. To achieve this level of variability, the creator of the virus uses
his metamorphic engine to transform code templates into working decryp-
tors.

In some cases, the decryptor may start with a header whose purpose is
to generate anti-emulation code on the fly. It contains a small oligomor-
phic code snippet containing the instruction “ReaD Time Stamp Counter”
(RDTSC). The instruction retrieves the current value of an internal pro-
cessor ticks counter, then the decryptor uses the value of this random bit
to either decode and execute the virus body or bypass the decryption logic
and exit. This method is used to confuse emulators that do not support the
RDTSC instruction, and also attack all algorithms that rely on emulation to
either decrypt the virus body or use heuristics to determine viral behavior.

When the virus is initially executed, it retrieves the addresses of 20 APIs
required for replication and payload execution. Then, it checks the current
date to determine whether either of its payloads should be activated.

Metamorphism

After the payload check, the virus generates a new body in the following
steps:

1. Disassembles the viral code into an intermediate form, which is inde-
pendent of the CPU on which the native code executes. This allows
for future extensions, such as producing code for different operating
systems or even different CPUs.

2. Shrinks the intermediate form by removing redundant and unused in-
structions. These instructions were added by earlier replications to
interfere with disassembly by virus researchers.

3. Permutates the intermediate form by reordering subroutines or sepa-
rating blocks of code and linking them with jump instructions.

48

4. Expands the code by adding redundant and unused instructions.

5. Re-assembles the intermediate form into a final, native form that will
be added to infected files.

Most first generation metamorphic viruses could only expand. Simile can
both expand and shrink to different forms. Simile.D is capable of translating
itself into different metamorphic forms (V1, V2 . . . Vn) and does so on more
that one operating systems (O1,O2 . . . On) [7]. The power of Similes’ engine
is demonstrated in the following code, which was published in [41]:

mov dword_1, 0h
mov edx, dword_1
mov dword_2, edx
mov ebx, dword_2
mov edi, 32336C65h
lea eax, [edi]
mov esi, 0A624548h
or esi, 4670214Bh
lea edi, [eax]
mov dword_4, edi
mov edx, ebp
mov dword_5, edx
mov dword_3, esi
mov edx, offset dword_3
push edx
mov dword_6, offset GetModuleHandleA
push dword_6
pop dword_7
mov edx, dword_7
call dword ptr ds:0[edx]

Similes’ metamorphic engine could replace the previous code by the fol-
lowing five lines:

mov dword_3, 6E72654Bh
mov dword_4, 32336C65h
mov dword_5, 0h
push offset dword_3
call ds:[GetModuleHandleA]

Replication

The next phase is replication. The virus begins searching for *.exe in
the current directory, and then in all fixed and mapped network drives. The

49

infection routine only scans to a depth of three subdirectories and completely
avoids any directories that begin with the letter “W”. There is a 50% chance
that each discovered file will be skipped explicitly. Files that begin with “F-
”, “PA”, “SC”, “DR”, “NO”, or contain the letter “V” anywhere in the
name will also be skipped. Some other character combinations are skipped
unintentionally.

If a file cannot be infected safely, it is filtered out by the infection routine.
For infectable files, random factors and the file structure will determine
where the virus places the decryptor and the virus body. If the file contains
no relocations – or by small chance – the virus body will be appended to
the last section of the file. The decryptor will be placed either immediately
before the virus body or at the end of the code section. If the name of the
last section is “.reloc”, the virus will insert itself at the beginning of the
data section.

Payload

The first payload activates only during March, June, and September.
Variants A and B display their message on the 17th day of these months
and variant C on the 18th. Simile.A displays the following message:

Simile.B displays the following message:

Simile.C attempts to display “Deutsche Telekom vy Energy 2002**” but
due to the authors little understanding of the code, the message rarely ap-
pears correctly:

50

In variants A and B, the second payload activates on the 14th of May and
displays the message “Free Palestine!” on computers that use the Hebrew
locale. In variant C, the second payload activates on the 14th of July and
attempts to display the message “Heavy Good Code!”, but due to a bug the
message is only displayed on systems that the locale cannot be determined.

Simile.D used the first Win32/Linux cross-infector {Win32,Linx}/Peelf,
which uses two separate routines to carry out the infection on PE and ELF4

files. The virus was confirmed to infect files under Red Hat Linux versions
6.2, 7.0, and 7.2, and it is likely that it can infect under most other common
linux distributions. Information about Simile variant D were taken from
[44]. For Simile.D, if the virus host is a PE file, the following message will
be displayed:

If the virus host is an ELF file, the virus attempts to output the follow-
ing text message to the console:

5.5 The Virus Evolution: A Simple Comparison

According to Fred Cohen, a computer virus is a program that can infect
other programs by modifying them to include a possibly evolved copy of
itself. A simple computer virus have three components: the replication, the
payload, and the trigger. The payload is responsible for performing any kind
of malicious actions in the infected system. The trigger is responsible for
checking if the desired conditions are met in order to deliver the payload.
The previous two components depend on the virus and have no significant
effect on the evolution of the computer virus.

4Executable and Linking Format (ELF) is a standard file format in Unix for executa-
bles, object code, shared libraries, and core dumps.

51

The most significant component of a computer virus and the one that
has evolved through the years, is the replication component. The replica-
tion component is responsible for replicating the virus by infecting other
programs. The first generation of computer viruses is a very simple one.
This virus infects other files by modifying them and attaching itself to them
– usually at the entry-point. Because the simple virus attaches the exact
same copy of itself to all infected files, detection is an easy case for the an-
tivirus scanners. The only thing the antivirus vendors have to do is get a
copy of the virus, extract a hexadecimal search string from the virus code,
and scan for that specific string. Figure 5.6, is a simple illustration of the
simple virus (V) replication, from generation to generation.

Figure 5.6: Simple virus replication

The encrypted virus carries a small encryption routine (decryptor), and
encrypts and decrypts its constant body each time it infects a new file.
This way the antivirus scanners cannot detect the virus body because it is
encrypted – usually using a different encryption key each time. However,
the encrypted virus still has a constant body under the encryption, and also
has to carry the constant code of the decryptor. Although not a very good
method to be used exclusively, antivirus scanners can detect the encrypted
virus just by detecting its constant decryptor. Figure 5.7, illustrates how
the encrypted virus replicates. The decryptor (D) is constant and behind
the encryption the body of the virus remains constant too.

Figure 5.7: Encrypted virus replication

In order to solve this problem, the polymorphic virus use different meth-
ods to change the code of its decryptor, from generation to generation. This
type of virus still has a constant – but encrypted – body and a decryptor,
but each time the decryptor would change shape so that no search string can
be extracted from its code, thus antivirus scanners cannot detect it using
search strings. However, in order to function the virus has to decrypt itself
and present its constant body somewhere in memory. Advanced antivirus
techniques can decrypt the virus body and identify the virus. Figure 5.8

52

on the following page, illustrates how the polymorphic virus replicates. The
decryptor (D) changes shape from generation to generation, but behind the
encryption there is still a constant virus body.

Figure 5.8: Polymorphic virus replication

The metamorphic virus uses no encryption – with some exceptions – to
hide its code. In fact, an advanced metamorphic virus has no constant data
anywhere between generations; new generations look completely different.
Simply speaking, this virus changes its shape every time it infects a new file
or a new system, while preserving its functionality. No hexadecimal search
strings can be extracted from it, thus detection using strings is virtually
impossible. Figure 5.9, illustrates the replication of a metamorphic virus. It
is obvious that no constant data exists between different generations.

Figure 5.9: Metamorphic virus replication

The previous illustrations are simplified. Not all types of viruses can
be visualised in the previous ways. For example, EPO viruses – can be
encrypted, metamorphic, or metamorphic – do not attach themselves on the
entry-point of the host file as shown above, but somewhere between the code
of the host file.

53

Chapter 6

Metamorphic Virus
Detection

Metamorphic techniques make virus detection using search strings vir-
tually impossible. To detect a metamorphic virus, techniques such as exam-
ination of the file structure, or analysis of the behavior of the code must be
used. For perfect detection of a metamorphic virus, detection routines must
be written that can generate the essential instruction set of the virus body
from the actual instance of the infection [7].

This Chapter discusses the weak points of metamorphic viruses and de-
scribes several techniques for their detection. Some of the techniques are
used in commercial antivirus products and others are experimental methods
proposed by academic papers.

6.1 The Weakness of Metamorphic Viruses

Metamorphic viruses transform their code as they propagate, in order
to avoid detection by static signature-based virus scanners and use code
obfuscation techniques to challenge deeper static analysis. They can also
beat dynamic analysers, such as emulators, by altering their behavior when
they detect that they are executing under a controlled environment [36].

Metamorphic viruses are difficult to detect because their creators have
the advantage of knowing the weaknesses of antivirus scanners [36]. The
limits of antivirus scanners come from the limits of static and dynamic
analysis techniques. The following techniques are used by virus writers to
attack the various stages in the analysis of binaries [45]:

• Attacks on disassembly

• Attacks on procedure abstraction

• Attacks on control flow graph generation

54

• Attacks on data flow analysis

• Attacks on property verification

Lakhotia, Kapoor, and Kumar believe that antivirus technologies could
counter-attack using the same techniques that metamorphic virus writers
use; identify similar weak spots in metamorphic viruses [36]. The authors
of [45], explain that the virus writers face the same theoretical limits as
antivirus technologies and this could be used to the advantage of antivirus
researchers.

As explained in [36], in order to mutate their code generation after gen-
eration, metamorphic viruses have to analyse their own code, thus they too
face the limits of static and dynamic analysis. Furthermore, a metamor-
phic virus have to be able to reanalyse the mutated code that it generates.
This means that the complexity of transformations in the previous genera-
tions have a direct impact on how a virus analyses and transforms code in
the current generation. Thus, metamorphic viruses need to use some coding
conversions, or develop special algorithms that will help them to detect their
own obfuscations.

The Achilles’ heel of a metamorphic virus, as described by Lakhotia,
Kapoor, and Kumar in [36], is its need to analyse its own code. An antivirus
scanner should be able to analyse a metamorphic virus by using whatever
method the virus uses to analyse itself. Thus, a “reverse morpher” could
be created which would apply all the transformation rules of the virus in
reverse and reveal the real virus code. The problem with this is that virus
researchers must first have a sample of the virus in order to extract its
transformation rules, assumptions, and algorithms.

6.2 Geometric Detection

Geometric detection is based on modifications that a virus has made to
the file structure. Peter Szor calls this method shape heuristics because is
far from exact and prone to false positives [7].

Geometric detection can be used to detect Win95/Zmist. Because the
data section of a file is increased by at least 32KB when it is infected by an
encrypted version of the virus, the file might be reported as being infected
if the virtual size of its data section is at least 32KB larger than its physical
size. However, this method could introduce false positives, as the previous
file structure alternation could also be an indicator of a runtime-compressed
file [7].

This method could be used in combination with virus infection markers
in order to decrease the risk of false positives. Sometimes viruses will make
use of an infection marker in order to detect already infected files and avoid

55

multiple infections. For example, the Win95/Bistro.B virus places a high-
byte value 0x51 at the minor linker version field [40]. However, the risk of
false positives is never eliminated.

6.3 Wildcard String and Half-Byte Scanning

Simple metamorphic viruses, such as viruses that use register swapping
and instruction replacement, can be detected by wildcard and half-byte scan-
ning (see section 3.1.2 on page 15). The following example code fragment
belongs to Win95/Regswap virus and was published in [40]:

First generation:

BE04000000 mov esi,000000004
8BDD mov ebx,ebp
B90C000000 mov ecx,00000000C
81C088000000 add eax,000000088
8B38 mov edi,[eax]
89BC8B18110000 mov [ebx][ecx]*4[00001118],edi
2BC6 sub eax,esi
49 dec ecx

Second generation:

BB04000000 mov ebx,000000004
8BCD mov ecx,ebp
BF0C000000 mov edi,00000000C
81C088000000 add eax,000000088
8B30 mov esi,[eax]
89B4B920110000 mov [ecx][edi]*4[00001120],esi
2BC3 sub eax,ebx
4F dec edi

It is obvious that there exist many common opcodes that are constant
to all generations of the Regswap virus. This makes the extraction of usable
search stings using wildcards possible. If the scanner supports it, half-byte
detection would also be appropriate for this type of infection [7].

6.4 Code Disassembling

Disassembling the virus code means separating the stream into individual
instructions. This technique is good for detecting viruses that insert garbage
code between their code, because instructions can be too long and simple
search strings cannot be used. Also, as explained in [7], there is a possibility
that a string can appear inside an instruction instead of being the instruction

56

itself. For example, if one wants to search for the instruction “CMP AX,
‘ZM’ ”, which tests if a file is executable – something common among viruses
– one would search for the string:

66 3D 4D 5A

The above string can be found in the following stream:

90 90 BF 66 3D 4D 5A

If the above stream is disassembled and displayed, what is found is not the
instruction mentioned above, but the following:

nop
nop
mov edi, 5A4D3D66

Such mistakes can be avoided with the use of a disassembler.
This technique becomes a powerful tool when combined with a state

machine1, which could record the order in which “interesting” instructions
are found. It becomes even more powerful if it is combined with an emulator,
and it becomes capable of detecting difficult viruses like Win95/Zmist or
Win95/Puron – based on the Lexotan engine [7]. The following sample
detection of Win95/Puron was published in [23]:

movzx eax, ax
mov ecx, dword ptr [edx+3C] ; interesting
xor esi, esi
mov esi, 12345678
cmp word ptr [edx], ’ZM’ ; interesting
mov ax, 2468

Its easy to detect Lexotan and Puron using only a disassembler and a
state machine, because both viruses execute the same instructions in the
same order, with only garbage and jump instructions inserted between the
core instructions [23].

6.5 Using Emulators

As described in section 3.4 on page 20, code emulation implements a
virtual machine to simulate the CPU and memory management system and
executes malicious code inside the virtual machine. The malicious code can-
not escape the virtual machine of the scanner [7]. Antivirus scanners can

1A state machine is a model of behaviour composed of a finite number of states, tran-
sitions between those states, and actions [46].

57

run code inside an emulator and examine it periodically or when interest-
ing instructions are executed. For example, “INT 21h” is a very common
instruction to search for in DOS viruses. The following sample detection of
the ACG virus was published in [23]:

mov ax, 65a1
xchg dx, ax
mov ax, dx
mov bp, ax
add ebp, 69bdaa5f
mov bx, bp
xchg bl, dh
mov bl, byte ptr ds:[43a5]
xchg bl, dh
cmp byte ptr gs:[b975], dh
sub dh, byte ptr ds:[6003]
mov ah, dh
int 21

In one class of the ACG virus, when the “INT 21h” is reached, the
registers contain ah=4a and bx=1000. The basis of ACG detection is to
trap enough similar instructions.

Detection of Win95/Evol

Evol is a virus that deals with the problem of hiding constant data as
variable code inside itself, from generation to generation. Code tracing can
be very useful in detecting such changes. Evol builds the constant data on
the stack from variable data and then passes them to the actual function
or API that needs them. With appropriate break points, emulators can be
very useful on dealing with such viruses [7].

The only thing needed is a p-code scanning language that can be used
to write algorithmic detections. For viruses such as Evol, which often build
constant data on the stack, the emulator can be instructed to run the emu-
lation until a predefined limit of iterations and to check the content of the
stack after the emulation, for constant data built by the virus. The con-
tent of the stack can be very helpful in dealing with complex metamorphic
viruses that decrypt data on the stack [7].

6.5.1 Using Negative and Positive Features

This is a technique used to make the scanning process faster. Positive
detection checks for a set of patterns that exist in a virus body, while negative
detection checks for the opposite. Negative detection can be used to stop

58

the detection process by identifying a set of instructions that do not appear
in any of the instances of the actual metamorphic virus.

6.5.2 Using Emulator-Based Heuristics

Heuristic detection does not identify viruses specifically but extracts fea-
tures of viruses and detects classes of computer viruses generically. Infor-
mation in this section were taken from [7], unless otherwise stated.

The heuristics engine can track the interrupts or implement a deeper level
of heuristics using a virtual machine that simulates the operating system.
Such systems can even replicate the virus inside the virtual machine on a
virtual file system. Some antivirus products implement such systems and
find them to be very effective, providing less false positives. This technique
requires emulation of file systems. For example, whenever a new file is
opened by the emulated virus, a virtual file is given to it. Then the emulated
virus might decide to infect the virtual file in its own virtual system.

To detect and prove the virus replication process, the heuristics engine
can take the modified virtual file from one virtual machine and place it in
another one. If the modified virtual file modifies other virtual files in the
new virtual machine – similarly to previous experienced virus-like changes
– then the virus replication in detected.

One big problem with this is that is very difficult to emulate multi-
threaded systems – especially Windows on Windows build into a scanner.
Because of Windows complexity, such systems cannot be perfect, not even
when using a system such as VMWARE. Third-party DLLs are not part of
the actual virtual machine and if a virus attempts to make use of such an
API set, the emulation of the virus is likely to be broken.

Another big problem is performance. It does not matter how good a
scanner is and if it can detect every single virus; if it is not fast enough
it is bound to fail as a product. Customers believe that faster is better, so
antivirus scanners would always have to compromise regarding speed, even if
all the resources to develop a perfect VM to emulate Windows on Windows
inside a scanner were available. However, as Peter Szor comments,

“...extending the level of emulation of Windows inside the scan-
ner system is a good idea and leads to better heuristics reliability.
Certainly, the future of heuristics relies on this idea.”

Unfortunately, virus writers are aware of emulation-based antivirus tech-
niques. They incorporate several anti-emulation techniques to challenge an-
tivirus systems. EPO viruses, such as Win95/Zmist, can trick emulators.
Anti-emulation tricks were known even in DOS days by viruses such as
ACG, which replicates only on certain days or under similar conditions. If
the scanner use pure heuristics and pay no attention to virus-specific details,
detection would never be perfect. For example, if one scans on Tuesday for

59

a virus that only replicates on Mondays, the virus could be easily missed.
Another example is the Win32/Magistr virus which never infects without
an active internet connection. If the virus looks for a specific web site and
the emulator is not able to provide a proper real-world answer, the virus
would not replicate and the scanner would not detect it.

Moreover, there will be viruses that cannot be detected not even in a
perfect emulated environment. Only virus-specific detection can work for
such viruses. No doubt that some of them will be metamorphic too.

6.5.3 Dummy Loops Detection

Another anti-emulation technique was introduced by an improved ver-
sion of the Bistro virus, which was released some time after the original.
This technique, which is called random code insertion (macho engine), in-
serts garbage instructions and dummy loops randomly before the decryptor
code. This results to some emulators to fail to rebuild the real virus and
emulate millions of garbage instructions.

Emulators must have a means of identifying garbage and do-nothing
instructions and dummy loops and must be able to skip them. For example,
the macho engine of the Bistro virus can be detected by monitoring the
movement of IP and checking the “WRITE” operations. This method can
be used for generic detection of all Win32 viruses that use macho engines;
however, this method can produce false positives. Information about this
technique comes from [40].

6.5.4 Stack Decryption Detection

Variants of the Zmorph virus, a metamorphic virus created by the virus
writer Z0mbie, place a piece of polymorphic code at the entry point of an
infected file. Then, they decrypt the virus instruction-by-instruction and
rebuilt it by pushing the result into the stack memory. After decryption of
the last instruction, control is transferred to the start of the virus body in
the stack.

If the emulator is not capable of detecting stack decryption, such viruses
would be missed. The memory accessed by the virus must be monitored
by the emulator and when control is transferred to the stack memory, the
emulator should detect it and dump the whole decrypted virus code for
identification. The drawback of this technique is that is has a significant
impact on the performance of the scanner, thus filter checking by geometric
techniques (see section 6.2 on page 55) should be applied first. Information
about this technique comes from [40].

60

6.6 Code Transformation Detection

Section 5.3.5 on page 42 discusses about instruction replacement tech-
niques, were a metamorphic virus replaces instructions with other equiva-
lent instructions. Code transformation is a method for undoing the previous
transformations done by the virus. Code transformation is used to convert
mutated instructions into their simplest form, where the combinations of
instructions are transformed to an equivalent but simple form. After the
transformation common code exhibited by the virus can be identified. All
information and sample code about this technique were taken from [40].

The first metamorphic virus that this technique was applicable to, was
Win32/Simile. This section provides a brief discussion on how Simile im-
plements code transformation. For more details on Simile, see 5.4.2 on
page 47. Some of the metamorphic techniques that Simile implements are:
entry-point obfuscation (EPO), permutation, and heavy code mutation by
shrinking and expanding techniques. The steps that the virus goes through
to achieve code mutation are the following:

1. Disassembler

2. Shrinker

3. Permutator

4. Expander

5. Assembler

It uses a pseudo-assembler technique to decode instructions to a form
it can manipulate. Then, it extracts the instructions, instruction lengths,
registers, and other relevant information. Then, the shrinker compresses
the disassembled code produced from previous generations, and removes
garbage instructions. The following code is sample instructions that Simile
has transformed:

xor reg,-1 -> not reg
sub mem,imm -> add mem,-imm
xor reg,0 -> mov reg,0
add reg,0 -> nop
and mem,0 -> mov mem,0
xor reg,reg -> mov reg,0
sub reg,reg -> mov reg,0
and reg,reg -> cmp reg,0
test reg,reg -> cmp reg,0
lea reg,[imm] -> mov reg,imm
mov mem,mem -> nop

61

The virus code is first processed by the permutator, in order to increase
the level of metamorphism. The expander undoes what the shrinker did.
It is also responsible for register translation and variable re-selection. The
expander randomly selects instructions and in the final step, the assembler
converts the pseudo-assembly code into real Intel IA-32 assembly instruc-
tions.

The following two pieces of code are two different generations of Simile.
They look completely different but more detailed analysis will show that
both assemble the string “kernel32.dll” in the stack and then call the Get-
ModuleHandle API.

First generation of Simile:

mov eax,06E72656B ;nrek
mov [edx],eax
mov eax,032336C65 ;23le
mov [edx][04],eax
mov eax,06C6C642E ;lld.
mov [edx][08],eax
xor eax,eax
mov edx][0C],eax
call .00040299D

Second generation of Simile:

push 6c6c442e ; mov ebp, lld.
pop ebp
mov edx,73b36c67 ; mov edx, 23le > encrypted
and edx,3e7fdedd
push 4e72454b ; mov esi, nrek
pop esi
push ebp ; mov ecx, ebp
pop ecx
mov dword ptr ds:[42268c],ecx ; mov mem+8, ecx
lea ebx,dword ptr ds:[esi] ; mov ebx, esi
mov dword ptr ds:[422684],ebx ; mov mem, ebx
mov dword ptr ds:[422688],edx ; mov mem+4, edx
push 0 ; xor reg2, reg2 or mov reg2, 0
pop edx
mov dword ptr ds:[422690],edx ; mov [mem+c], edx
mov ecx,infect1.00422684 ; mov ecx, mem
push ecx ; push ecx
push <&kernel32.getmodulehandlea> ; mov edi, offset getmodulehandle
pop edi
call dword ptr ds:[edi] ; call getmodulehandle via edi

62

The perfect solution for this virus is code detection but is very difficult
to implement. It involves transforming the virus code back to its initial
form, before the expansion stage – similar to the first generation. The virus
must be transformed back to its simplest form, where common instructions
for virus detection can be extracted. Three instructions are transformed to
two or one instructions and two instructions are transformed into one.

However, to be able to guarantee perfect detection without compromising
scanning speed, the code transformation module must be highly optimised
and flexible. The virus location can be transformed from were the scan
pattern is taken – this will reduce the impact on the performance of the
scanner. If possible, checking filters by geometric techniques (see section 6.2
on page 55) will also improve the performance of the scanner.

6.7 Subroutine Depermutation

As the name suggests, subroutine depermutation technique is used for
detection of viruses that use permutation of their code to form new genera-
tions. As described in section 5.3.3 on page 40, metamorphosis is achieved
by dividing the code into frames, and then position the frames randomly
and connect them by branch instructions to maintain the process flow.

The Zperm virus, a virus created by Z0mbie, uses the sophisticated Real
Permutation Engine (RPME) in order to mutate its code. To detect such a
virus, the scanner must perform partial emulation to reconstruct the virus
code into its initial form before the permutation. Partial emulation means
emulating branch instruction, such as jump instructions. Figure 6.1, which
was published in [40], shows the process of rebuilding the permutated virus
body.

Deciding when to stop decoding is the problem of this technique. Also,
ensuring that the virus code is finished is another challenge. These problems
can be solved with the help of the decode table and IP address table. In
addition to rebuilding the virus code, this technique can be effective for
removing garbage instructions too. Information about this technique comes
from [40].

6.8 Using Regular Expressions and DFA

The use of disassembly code to match patterns (regular expressions)
using Deterministic Finite Automata (DFA), is a very efficient way to deal
with code obfuscation. All information about this technique comes from
[40]. Before going any further, the following terminologies are appropriate:

Regular Expression: a formula for matching strings that follow a pattern.
It provides a mechanism for selecting specific strings from a set of
character strings.

63

Permutated code Decoding procedure

aaa1 1. decode aaa1
aaa2 2. decode aaa2
aaa3 3. decode aaa3
jmp @A 4. change IP to @A
bbb1 5. decode aaa7
bbb2 6. decode aaa8

@B: aaa4 7. decode aaa9
aaa5 8. change IP to @B
aaa6 9. decode aaa4
jmp @C 10. decode aaa5
bbb3 11. decode aaa6
bbb4 12. change IP to @C

@A: aaa7 13. decode aaa10
aaa8 14. decode aaa11
aaa9 15. decode aaa12
jmp @B 16. decode ret

@D: aaa13
aaa14
ret
bbb5

@C: aaa10
aaa11
aaa12
ret

Figure 6.1: Process of rebuilding a permutated virus body (from [40])

64

DFA: a transition table containing states and their corresponding next
states.

Automaton: a predetermined sequence of operations. In this context, it
corresponds to the sequence of disassembly codes.

Grammar: the rules of a language. In this context, the grammar pattern
pertains to the collection or set of disassembly codes that the virus
uses and provides the rule or the positive filter for detection.

Simply speaking, this method treats the virus as a series of disassembly
codes that can be matched against a database of existing virus disassembly
codes. This method terminates the scanning of a file automatically when the
current disassembly code does not match any of the disassembly codes in the
database, or when the disassembly code does not belong to the acceptable
list of instructions for a certain virus. This makes this technique relatively
fast.

The two main components involved in this method is the builder and the
simulator. The builder creates the automaton of the virus using the grammar
pattern. The simulator performs the automaton matching and conditional
test, using regular expression operators during file scanning. The grammar
pattern contains information on normalisation (a set of garbage or negative
filters) and information on how to detect the malicious file. It uses regular
expression where each item represents an assembly instruction.

An opcode can be any Intel IA32 assembly instruction and an operand
can be any of the following:

• Exact: specifies the exact operand to match. For example:

push eax

• Wildcard: specifies the general type of the operand. For example:

push reg32
mov reg,imm

• Variable: information on an operand may be stored and retrieved later
for matching. For example:

dec reg32_varset1
push reg_var1

In wildcard instruction the opcode and the operand vary. Possible
values for the register operand are the following “reg”, “reg8,”, “reg16”,
“reg132”. Possible values for the immediate operand are the following

65

“imm”, “imm16”, “imm32”. Possible values for the memory operands are
the following “mem”, “mem16”, “mem32”. Assembly instructions are asso-
ciated through operators such as start (*), plus (+), questionmark (?), and
explicit dot (.).

Figure 6.2, shows the DFA building process. The pattern source format
is processed by the DFA to produce automatons. Each assembly instruction
is assigned a unique ID for easy matching and added to the corresponding
garbage, accept, and grammar lists.

Figure 6.2: DFA building process (from [40])

The simulator, which scans files for viral code, has four sub-components:

• a disassembler,

• a depermutator,

• a normalizer, and

• a DFA simulator.

Before any input data is passed to the DFA simulator, it is pre-processed
by the the first three components. Figure 6.3 on the following page, shows
the components of the simulator.

The disassembler performs the conversion from binary code to assembly
code. The depermutator component connects the subroutines of the permu-
tated virus. The normalizer explicitly drops garbage instructions. The final
step of the process is DFA simulation. Using the input symbol derived from
the file being scanned and the automaton created in the building process,
the DFA simulator scans the file for malicious code.

For every input symbol the simulator checks for the matching states and
updates them accordingly. Wildcards and conflicts in pattern are resolved
by having a set of transition states. When an input symbol is rejected, the
DFA simulator checks the entries in the Accept section. If there is a match,
the state is toggled back as if it was not rejected. It then reads the next
input and continues the simulation. Once the final and accepting state is
reached, the file is tagged as a virus.

66

Figure 6.3: DFA simulation process (from [40])

This detection technique covers almost all of the code evolution tech-
niques discussed in the previous chapters. Encrypted viruses can be de-
tected by creating a virus signature based on the decryptors’ disassembly
code. Oligomorphic and polymorphic viruses can be addressed by creating
an automaton based on the virus alphabets, or the possible set of instruc-
tions that it can produce during infection. This method also covers the de-
tection of permutating viruses through the depermutator component, which
connects the subroutines of the permutated virus.

Emulators are known to be slow and cannot handle viruses that gen-
erate do-nothing loops, unless they are able to detect dummy loops (see
section 6.5.3 on page 60). This technique simply treats the virus as a se-
ries of disassembly codes that can be matched with a database of existing
virus disassembly codes. For more sophisticated viruses, such as Zmist and
Simile, this detection method works best if combined with an emulator.

6.9 Experimental Detection Techniques

This section describes some experimental techniques for detecting meta-
morphic viruses. These techniques were published in articles as proposals
or experiments and are not implemented in commercial antivirus products
yet.

6.9.1 Detection Using Engine Signature

This technique was published by Mohamed Chouchane and Arun Lakho-
tia in [35].

67

Introduction

This technique makes use of an engine-specific scoring procedure that
scans a piece of code to determine the likelihood of that being part of a
program that has been generated by a known metamorphic engine that
implements instruction replacement techniques (see 5.3.5 on page 42). For
this method, all that needs to be stored for detection purposes is information
about the engine, rather than information about each possible virus variant
it can generate.

The scoring technique is designed for metamorphic engines that trans-
form their input variant of a virus using a finite set of transformation rules
– mapping instructions to code segments that implement their operational
semantics. When such an engine is given as input a code segment to be
transformed, it scans the segment for instructions that can be transformed.
The engine sometimes needs to perform simple context analyses, or make
assumptions about the code, to decide whether or not the instruction can
be transformed.

For example, the third rule in the instruction replacement system of
Figure 6.4, is semantics preserving only if register “eax” is dead at that point.
When the engine determines that it is safe to transform the instruction, it
probabilistically decides whether or not to replace it with an equivalent code
segment. The engine of Win32/Evol is an example of such an engine where
each rule has its own application probability.

Figure 6.4: Instruction replacement system of Win32/Evol (from [35])

The scoring technique was inspired by Chouchane and Lakhotias’ obser-
vation that over 50% of the original variant of instruction replacing meta-
morphic malware is transformable. They use the phrase engine friendliness
to refer to this level of transformability of the variant. Such engines also
tend to be written such that their transformation rules preserve this level of
transformability across generations; that is, high engine friendliness usually
applies to all variants of the malware. This is typically done – in the case of

68

instruction-replacing engines – by ensuring that even the code segments that
are used to replace other code segments contain at least one transformable
region. This technique would be useful in detecting new viruses that make
use of known metamorphic engines created by more advanced virus writers.

Evaluation

The scoring function used in [35] is given by the expression:

SE(V) =
ΣcΣSwcecs
|V |

The explanation of the above formula is out of the scope of this project.
To evaluate the scoring function, Chouchane and Lakhotia implemented a
prototype simulator of an instruction replacing metamorphic engine and
used it to run two experiments. The rule set they chose to use was the one
used by the metamorphic engine of the Win32/Evol virus.

The goal of Evaluation 1: Tracking typical engine output to the engine,
was to determine how well, and for what parameter choices the scoring
function can assist in discriminating the engines output from arbitrary code
segments.

The goal of Evaluation 2: Tracking variants of fixed metamorphic mal-
ware to the engine, was to determine how well, and for what parameter
choices the scoring function can assist in discriminating variants of known
malware from arbitrary code segments.

Evaluation 1 showed that the scoring method successfully managed, in
several cases, to score the engines’ output considerably higher than engine-
independent segments. It can be seen from the simulation results that the
function performed particularly well on all variants, when the original vari-
ant engine-friendliness was over 50%. For lower engine-friendliness values,
say 5%, the function was only successful in telling later generation variants
from engine-independent segments.

Evaluation 2 showed that segments from Win32/Evol could be tracked to
Evols’ engine by measuring their closeness to the means of the distributions
corresponding to each generation. An inspection of the simulation results
reveals that segment scores seem to somehow converge towards some small
range of values, as the segment mutates.

Conclusion

Chouchane and Lakhotia introduced a novel approach for dealing with
metamorphic malware; a method that takes advantage of the fact that meta-
morphic engines – in order to generate an output program that is as different
as possible from the input – typically require their input to be highly trans-
formable. They used a scoring function to illustrate this approach on a

69

metamorphic engine capable of performing instruction replacement, that of
Win32/Evol. They concluded that more analysis would perhaps be needed
should the scanner wish to gather more evidence that the code being scanned
is in fact from a variant of Win32/Evol.

6.9.2 Detection Using Redundancy Control Strategy

This method was proposed by Ando, Quynh, and Takefuji in [34].

Introduction

Ando, Quynh, and Takefuji proposed a resolution-based detection method
for detecting metamorphic viruses. As they explain, their method is the ap-
plication of formal verification using theorem proving, which extracts parts
of virus code from a large number of obfuscated operations and re-assembles
them in order to reveal the signature of the virus. In their paper, they have
shown that the complexity of metamorphic viruses can be solved if the ob-
fuscated virus code is canonicalized and simplified using resolution-based
state pruning and generation.

They tried to make their detection method more feasible and effective by
applying redundancy-control strategies for the resolution process. In their
paper they applied demodulation and subsumption in order to eliminate
the redundant path for resolution. Their experiment showed that without
the strategies mentioned above, resolving metamorphic code into several
simplified operations in reasonable computing time, is not feasible.

They also presented statistics of reasoning process in detecting obfus-
cated API calls. They divided obfuscated API calls into four modules, ac-
cording to the types of metamorphic techniques, and compared the conven-
tional resolution with their method, applying redundancy-control strategy.

State resolution and demodulation

As Ando, Quynh, and Takefuji explain in their paper, if a program is
infected, there has been a state transition to achieve some malicious oper-
ations, such as making API calls. To resolve these instructions from obfus-
cated code, the resolution system needs to store all states generated by the
execution of every instruction. Their proposed method for the resolution-
based detection of obfuscated metamorphic code is illustrated in Figure 6.5
on the following page.

Their method consists of two types of reasoning; resolution and demod-
ulation. First, they apply hyper resolution to several instructions to deduce
them to one simplified instruction. Second, garbage code such as “nop”, is
eliminated by a technique called demodulation, which is discussed later. As
they explain, in the process of detection, they add the formulation of disas-
sembly code of viral code besides the code under inspection and a reasoning

70

Figure 6.5: State pruning and resolution (from [34].)

program attempts to deduce the same as signature clauses from obfuscated
metamorphic code. The reasoning program terminates (detection is suc-
ceeded) when the equivalence is found between two clauses (codes).

Redundancy-control strategy

As described in [34], redundancy control strategy is designed to reduce
the obstacle for the reasoning program within the retained information.
Ando, Quynh, and Takefuji applied two strategies for this; subsumption
and demodulation.

Subsumption is the process of discarding a specific statement. The clause
that is duplicated or is less general, is discarded in the already-existing
information. As a result, subsumption prevents a reasoning program from
keeping clauses that are obviously redundant [34].

Demodulation is the automated reasoning; one of the procedures of sim-
plifying or canonicalizing information. Demodulation in an effective way to
eliminate garbage instructions [34].

Conclusion

Ando, Quynh, and Takefuji introduced a resolution-based technique for
detecting metamorphic viruses. In their method, scattered and obfuscated
code is resolved and simplified to several parts of malicious code. Their
experiment showed that compared with emulation, this technique is effec-
tive for metamorphic viruses which apply anti-heuristic techniques, such as
register substitution or permutation methods.

71

6.9.3 Detection Using Control-Flow Graph Matching

This technique for the detection of metamorphic malicious code was
proposed by Bruschi, Martignoni, and Monga in [47].

Introduction

As its authors explain, this method is used to detect metamorphic mali-
cious code inside a program P based on the comparison of the control flow
graphs of P against the set of control flow graphs of known viruses. More
precisely, given an executable program P , Bruschi, Martignoni, and Monga
disassemble it to obtain a program P ′. On P ′ they perform a set of normal-
isation operations in order to reduce the effects of mutation techniques, and
to uncover the flow connections between the benign and the malicious code.
What is left is a new version of P , namely PN .

Then, they take PN and build its corresponding labelled inter-procedural
control flow graph CFGPN

. Then, they compare CFGPN
against the con-

trol flow graph of a normalised malware CFGM in order to verify whether
CFGPN

contains a subgraph which is isomorphic to CFGM , thus reducing
the problem of detecting a malware inside an executable. Using this strategy
they were able to defeat most of the mutation techniques.

Detecting malicious code

The problem that exists when detecting metamorphic malicious code in-
side a file, is that the metamorphic malicious code scatters itself and becomes
part of the host. The scanner must deal with both mutation and scattering.
To deal with mutation, Bruschi, Martignoni, and Monga, try to normalise
different instances of the same malicious code into a canonical and minimal
form. To do this, they devised a detection process which is composed by two
components, which are explained in the following paragraphs, as described
by their authors: the code normalizer and the code comparator.

Code Normalizer — is the component responsible for normalising a pro-
gram, which means transform it into a canonical form – simpler in terms of
structure or syntax – while preserving the original semantics. Normalisa-
tion can be seen as a code optimisation method because it is responsible for
removing all garbage instructions introduced during the mutation process.
To do this, it performs the following steps:

• Decoding

• Control-flow and data-flow analysis

• Code transformation

72

Code Comparator — is responsible of taking a program P and a ma-
licious code M , and find out whether program P is hosting the code M .
Bruschi, Martignoni, and Monga decided to represent the malicious code
and the host program by their inter-procedural control flow graphs. A con-
trol flow graph (CFG) is an abstract representation of a procedure; each
node in the graph represents a basic block, and jump targets start a block
and end a block. Directed edges are used to represent jumps in the control
flow. An inter-procedural CFG links together the CFGs of every function
of a program [47].

Conclusion

Bruschi, Martignoni, and Monga proposed a detection method for meta-
morphic and polymorphic malware using control-flow graph matching. Mu-
tations are eliminated through code normalisation and the problem of de-
tecting viral code inside an executable is reduced to a simpler problem. I
quote their last words as a conclusion:

“We believe that experimental results are encouraging and
we are working on refining our prototype in order (i) to validate
our approach in more real scenarios as we are aware that our
current results are not complete and (ii) to be able to cope with
malicious code that adopts countermeasures to prevent static
analysis.”

6.9.4 Detection Using Algebraic Specification

This experimental technique was proposed by Webster and Malcolm and
was published in the “Journal in Computer Virology.” More detailed infor-
mation on this method can be found in [48].

Introduction

Webster and Malcolm introduced a metamorphic virus detection tech-
nique using an algebraic specification of the IA-32 assembly language. In or-
der to identify instruction sequences with similar behaviour, they use OBJ2

to formally specify the syntax and semantics of a subset of the IA-32 assem-
bly language instruction set.

As Webster and Malcolm explain, the OBJ specification is useful for
providing the equivalence or semi-equivalence of IA-32 instruction sequences
by applying reductions – sequences of equational rewrites in OBJ. They
continue by explaining that the OBJ specification, when combined with
the OBJ term rewriting engine, can be used as an interpreter for programs

2An algebraic specification formalism and theorem prover based on order-sorted equa-
tional logic [48]

73

in IA-32 assembly language, and this can be used for dynamic analysis of
computer viruses. In their experiment, they apply their proof methods to
fragments of the metamorphic viruses Win95/Bistro and Win95/Zmorph.

Proving equivalence of viral code

Webster and Malcolm use the term allomorphs to describe any two gener-
ations of the same metamorphic virus that differ syntactically. They showed
that, using the formalisation specification, it is possible to prove the equiv-
alence or semi-equivalence of various allomorphs of metamorphic viruses
using reductions in OBJ, by using the OBJ specification as an interpreter.
Description of the formal specification of IA-32 or the OBJ specification can
be found in [48] and is out of the scope of this project.

Application to antivirus scanning

If one specifies a programming language, such as IA-32, using a formal
notation and theorem prover, such as OBJ, one obtains an interpreter and
a program analysis tool for that language [49]. The behavior of a suspected
piece of code, could be checked by interpreting it using the OBJ specification
of IA-32. Webster and Malcolm used this method with two variants of the
Win95/Zmorph.A virus and showed their equivalency with respect to the
stack. This means that the state of the stack was affected in the same way
by both generations of the virus.

They propose that the IA-32 specification in OBJ could be applied as
a means of code emulation-based dynamic analysis. They also propose
that checking whether a suspect code fragment behave equivalently or semi-
equivalently to a signature of a metamorphic computer virus, could be an
application to aid signature scanning.

Conclusion

Webster and Malcolm introduced a new method for the detection of
metamorphic malware, by formally specifying the semantics of a IA-32 as-
sembly language using OBJ. They proved that these techniques are readily
available to real metamorphic viruses, by proving equivalence and semi-
equivalence for allomorphs of Bistro and Zmorph viruses.

6.9.5 Hidden Markov Models

A method for detecting metamorphic viruses using Hidden Markov Mod-
els was implemented by Wong and Stamp and published in [50]. All infor-
mation is this section and more details can be found in their original paper
cited above.

74

Introduction

Hidden Markov Models (HMMs) is a useful technique for statistical pat-
tern analysis. They are used in many applications including speech recog-
nition and biological sequence analysis.

An HMM is a state machine where the transitions between states have
fixed probabilities. Each state in an HMM is associated with a probability
distribution for a set of observation symbols. An HMM can be trained to
represent a set of data, where the data is in the form of observation sequence.
The states in the trained HMM represent the features of the input data. The
transition and observation probabilities represent the statistical properties
of these features. Given any observation sequence, we can score it using the
trained HMM – the higher the score the more similar the sequence is to the
training data.

HMMs and Metamorphism

HMMs can be used to detect families of viruses, and since metamorphic
viruses form families of viruses, HMMs can be used to detect them. The
problem is that metamorphic viruses change their form from generation to
generation. Despite the previous fact, some similarities always exist between
them. If these similarities can be found, then HMMs can be used to detect
these viruses. A trained HMM should be able to assign a higher probability
to viruses that belong to the same family as viruses in the training set.

The experiment

Wong and Stamp trained their Markov models using the assembly code
sequences of metamorphic virus files. They first disassembled the executable
files and extracted sequences of opcodes from each. Then, they concatenated
the opcode sequences to create one long observation sequence and used it for
training the models. When trained with multiple sequences, the resulting
HMM represents the average behavior of all sequences in the form of sta-
tistical profile. This way, Wong and Stamp were able to represent an entire
virus family with a single HMM.

After training a model, they used the resulting HMM to compute the log
likelihood for each virus variant in the test set and also for each program in
the comparison set. Their test set consisted of viruses in the same family as
those used for training, and the comparison set included normal programs
and viruses in other families. Comparing the scores of the files in the test
set with that of the files in the comparison set, they expected to see a clear
separation between the two sets. Their data set consisted of 200 viruses
generated by the Next Generation Virus Creation Kit (NGVCK).

The results showed that it is possible to set a threshold whereby the
family viruses are always distinguished from the normal files. There were

75

some false positives, but these were entirely due to non-family viruses.

Conclusion

Wong and Stamp experimented with Hidden Markov models to try to de-
tect metamorphic malware. They were able to distinguish NGVCK viruses
from normal programs, despite the fact that NGVCK viruses show a high
degree of metamorphism. The fact that metamorphic malware have assem-
bly code structure that is very different from normal programs makes them
detectable by methods like HMMs. Wong and Stamp concluded that in or-
der to avoid detection, metamorphic viruses also need a degree of similarity
with normal programs and this is something very challenging for the virus
writer.

6.9.6 Zeroing Transformation

As their authors, Lakhotia and Mohammed describe, this is a method
to impose an order on the statements and components of expressions of a
program. All information in this method comes from [51].

Introduction

This method, named zeroing transformation, is used to reduce the num-
ber of possible variants of a program created by reordering statements, re-
shaping expressions, and renaming variables. Lakhotia and Mohammed used
this method with a collection of C programs, and were able to reduce the
space of program variants due to statement reordering from 10183 to 1020.
If used for metamorphic viruses, this is a reduction in the number of signa-
tures needed. This means that antivirus technologies may be improved by
extracting signatures from the zero form of a virus, and not from its first
generation [51].

This method is another step towards transforming a program – ulti-
mately a metamorphic malware – to a canonical form, such that different
variants of the program have the same form. In their paper, Lakhotia and
Mohammed present a set of heuristics to impose order on the statements
of C-like programs. They expect that by imposing such an order, antivirus
technologies can undo the effect of statement/instruction reordering trans-
formations performed by metamorphic malware. As they explain, while the
most challenging viruses are binary, it is expected that for any significant
analysis a virus will have to be first decompiled to a higher language, thus
making this method applicable for binary viruses.

For their experiment they used GrammaTechs’ CodeSurfer3 to imple-
3A code browser that understands pointers, indirect function calls, and whole-program

effects. CodeSurfer is a program-understanding tool that makes manual review of code
easier and faster.

76

ment the technique in a prototype tool named C⊕.

Zeroing Transformation

Lakhotia and Mohammed call their method the zeroing transformation,
for its attempt to eliminate the effect of statement reordering, variable re-
naming, and expression reshaping. The zero form of a program is the result
of applying the zeroing transformation on that program. The following are
the steps of the zeroing transformation, as presented in [51]:

1. Create a Program Tree4 (PT) representation of the program.

2. Partition the PT nodes into re-orderable sets5, each set containing
statements that may be mutually reordered without affecting the se-
mantics of the program.

3. Partition each re-orderable set into a sequence of isomorphic sets,
where every statement in an isomorphic set has the same string rep-
resentation. The representation does not depend on names of the
variables in the program, order of variables in commutative operators,
and order of the statements in the program.

4. Assign a number to each statement. The numbering is done using a
depth-first traversal of the PT. Statements in a re-orderable set are vis-
ited based on the order in the sequence of isomorphic set. Statements
in an isomorphic set are visited in random order.

5. Create a new program by ordering the statements as per the numbers
assigned in the last step. In each expression, replace each variable
name by a new variable name created using the number of the state-
ment where it is first defined.

Further explanation of the previous steps can be found in [51] and its
out of the scope of this project.

The experiment

The authors of [51] developed a tool that implements their proposed
method for imposing order on the statements of C programs. Their tool
used the Program Dependence Graph (PDG) – generated by CodeSurferTM–
to gather the control and data dependencies needed to identify re-orderable
statements. They used the tool to analyse a set of real world C programs
to study how well their proposed method imposed order on the programs’

4A Program Tree (PT) is a hierarchical ordering of statements in a program. [51]
5A set of nodes in PT is re-orderable if its nodes can be mutually reordered (swapped)

without changing the semantics of the program represented represented by a PT [51]

77

statements. The programs used are the following: Bison, Cook, SNNS,
Fractal, and Computer Vision.

Figure 6.6 shows the reorderable percentages of the test programs. On
an average, 55% of the statements of the original program are reorderable.
After processing only 6% of the statements remained reorderable – could
not be ordered using this method. The most important filter is the SR1
filter, which significantly reduces the number of possible permutations for
each program.

Figure 6.6: Reorderable percentages for test systems (from [51])

Conclusion

Lakhotia and Mohammed developed transformations to undo the effect
of the following transformations performed by metamorphic viruses: state-
ment reordering, expression reshaping, and variable renaming transforma-
tion. They called the resulting form a zero form. Their experiment showed
that zeroing transformations results in a significant decrease in the number
of possible variants of a – ultimately malicious – program.

78

Chapter 7

Conclusions and the Future

7.1 Current Trends in Malware

In the last few years, there has been a significant change in the field of
information security, more specifically in the field that deals with malicious
code. A few years ago, malware were designed to cause major indiscriminate
damage. For example, in 2004 the Blaster worm was responsible for more
that half of the worst incidents in large businesses [1]. The “successful” virus
writer was the one whose malware caused the most infections and gathered
the most media attention.

This is not the case any more. In the last two years, no major damage
was done by a single malware, but by a high number of different malware
and variants. A 2006 research reports that 60% of respondents could not
recall which malware caused their worst incident [1]. The motivation of virus
writers has changed, and as a result the nature of malware has changed too.
Profit is what makes virus writers happy nowadays. Also, the law started to
catch up with cyber-criminals and made them realise that facing prison just
for fun is not a very smart thing to do. As a result, malware became more
insidious and target specific user groups. From “hobbyists,” virus writers
became professional criminals motivated by profit. Lee Phisher, a McAfee
Security Strategists points out:

“We have entered a new phase of malicious activity. Cyber-
crime is now driven by those out to make money, which has led
to growing involvement by organised criminals. They will capi-
talise on every opportunity to exploit new technologies and the
general lack of awareness surrounding securityand their methods
are becoming more subtle and sophisticated every day.”

Cyber criminals, among other techniques, make use of malicious code to
infect computers and use them for a variety of reasons, including theft of
private and confidential information. A recent report from Symantec showed

79

that 66% of the volume of the top 50 malicious code reported to Symantec
between July and December, 2006, targeted confidential information. The
cyber-criminal can use the stolen confidential information for any of the
following reasons, as described in [52]:

• Extortion

• Reputational Damage

• Fraud

• Money Laundering

The spyware menace

Spyware is a fast growing thread. As described in 2.4 on page 10, spyware
are malicious software installed on a computer, monitor user activity, and
report back to a third party. They are often downloaded and installed when
a user visits a malicious website or a legitimate website which has been
injected with malicious code. Although this problem is fairly new, there
exist many COTS1 products, solutions to the problem. However, a quarter
of UK businesses are not protected against spyware and as a result, roughly
one in seven of the worst malicious software incidents involve spyware [1].

Attack of the zombies

One increasingly popular activity among cyber-criminals is the use of
malware to create zombie computers. A zombie computer or bot, is a com-
puter on which a worm or virus has installed programs that run automati-
cally and allow cyber-criminals access and control [52]. Cyber-criminals use
these zombie computers to search for other vulnerable computers, install
their programs or store data. A zombie network or bot network, is a set of
infected machines often compromised weeks or months earlier by attackers
using worms or viruses to plant backdoor components. These zombie net-
works can contain from a few hundreds to several thousands of compromises
machines and can be used to launch simultaneous Denial-of-Service (DoS)
attacks, send spam, host illegal websites or illegal material, and other crim-
inal activities. Between July 1 and December 31, 2006, Symantec observed
an average of 63,912 active bot-infected computers per day. This is an 11%
increase from the previous period when Symantec observed an average of
57,717 active bots per day. Furthermore, Symantec observed 6,049,594 dis-
tinct bot-infected computers during the current reporting period [2]. Owners
of zombie networks can use them for their own activities or rent them to
other criminals, such as spammers.

1Commercial Of-The-Shelf is a term for software or hardware that are ready-made and
available for sale, lease, or license to the general public.

80

Infection Strategies

One of the greatest changes of the last few years, is the way computers get
infected. A couple of years ago, malware spread through the use of infected
email attachments sent directly to users. According to Sophos Labs, in 2005,
1 in 44 emails was infected with some sort of malware. In late 2006 and early
2007 only 1 in 337 and 1 in 322 respectively was infected.

Today, malware are placed on a website and are downloaded and installed
automatically when users browse to the compromised website. Users are
lured to the compromised websites by spam email invitations. According
to the latest Sophos Threat Report [53], the web-based thread that counts
for nearly half the worlds’ infected webpages is what Sophos Labs calls
Mal/Iframe. It works by injecting malicious code into vulnerable webpages.
The Sophos research shows that 80% of all web-based malware are being
hosted on legitimate but compromised websites. Many threads are designed
to attack web files, such as HTML, ASP, JS, and VBS, and an infection
on a web server can infect up to thousands of web files, which may part
of hundreds of different websites. This factor alone makes this attack very
significant and one that demands immediate care.

Fortunately, anti-virus vendors are catching up with this thread and
working on techniques to defend against. Peter Szor, the Security Architect
of Symantec Security Response, informed me that on Norton AntiVirus 2008
they will include a new feature to protect against web- based malware [54].

7.2 Trends in Metamorphic Malware

The whole area of malware is changing and the metamorphic virus is
not an exception. The latest worth mentioning metamorphic virus that was
analysed by experts was Simile in 2002. Peter Szor could not even recall the
names of any metamorphic viruses he examined after 2002 [54]. The fact
that there were no significant metamorphic virus in the wild for the last five
years might be because it is so difficult to write, that virus writers turn to
other methods.

Metamorphism is moving to other malware, such as Trojans and spyware,
which are typically distributed from infected or malicious websites. Some
of these malware are changed each time a user visits the infected website
upon clicking on a link of a phishing e-mail. This strategy can be described
as metamorphism, since the code of the malware itself is changed, often
without any encryption [54].

Attackers are more interested in money, so instead of spending much
time and effort in writing a metamorphic malware, they simply use packers2

2Malware packers build an outer shell for malicious files in order to make them less
recognisable by antivirus or antispyware programs

81

and wrappers3 on the top of Trojans. This is the main reason why there
are so many different Trojans in the wild [54]. From the volume of the top
50 malicious code reported to Symantec between July 1 and December 31,
2006, 45% were Trojans. Trojans accounted for 60% when measured by
potential infections [2].

Return to Polymorphism

In the first half of 2006, Symantec Security Response noticed a renewed
interest in self-mutating and polymorphic viruses. Over the past several
months, malicious code authors have been developing increasingly sophisti-
cated malicious code that employs these techniques. During March and April
of 2006, a worldwide outbreak of two polymorphic viruses, Win32/Polip
and Win32/Detnat, showed that security and antivirus vendors may have
difficulties in detecting these threats. Moreover, Symantec has increasingly
observed the use of polymorphic techniques in packers, which could lead
to increasingly sophisticated and potentially more damaging malicious code
being created [55].

The Symantec Internet Security Thread Report X, reports that more ma-
licious code authors may begin to use polymorphic techniques at all levels of
malicious code development. Obtaining samples for creating detection sig-
natures of such malware will likely to be very difficult, thus if more malicious
code use these techniques, organisations may be increasingly at risk.

Return to Metamorphism?

The return to polymorphic techniques indicates that virus writers are
once again trying to make their malicious code more sophisticated and ca-
pable of escaping detection from modern antivirus scanners. Polymorphic
malware may not be as difficult to write as metamorphic malware, but it is
still quite challenging. Cyber criminals are now turning to polymorphism,
tomorrow they might be turning to metamorphism. Probably not in the
form of the file infecting metamorphic virus presented in this report, but to
other types of malware, such as worm, Trojans, and spyware. Another good
candidate is the use of metamorphic techniques to malware wrappers, thus
creating millions of variants of current malware. Peter Szor, one of the most
respectful virus researchers, explains:

“In theory, viruses could evolve to a level where a virus would be
able to export a polymorphic or metamorphic engine of itself for
use in another virus or worm. Similarly, viruses would be able
to exchange trigger routines and appear in newer combinations.

3A wrapper is similar to a packer but can allow a script file, such as JavaScript, to be
presented in executable file format

82

This sounds superficial but the technology is out there to support
these kinds of models.”

The question is, is the antivirus community ready to deal with a highly
metamorphic malware, such as a computer worm or a Trojan? Recent re-
searches, such as [3] and [55], showed that is not. Should malicious code
authors turn to this very sophisticated code evolution technique, small busi-
nesses, large organisations, or even the home users will be in increasing risk.

7.3 Future Work

Unfortunately, a number of topics could not be discussed in detail be-
cause of space and time limitations. If there was more time, the topic of this
thesis could change to “Metamorphic Malware” and discuss more about mal-
ware obfuscation techniques in current threads. This way, it could give the
background of metamorphic virus detection, and at the same time expand
the discussion towards other types of malware and obfuscation techniques.
The most interesting topic would be polymorphic or metamorphic wrappers,
methods of rewrapping exploits in HTMLs or other web technologies. This
is interesting because malware authors and cyber criminals are increasingly
using the web to distribute their malicious code.

Further development of this research, should also focus on the method
of canonicalizing the code of a metamorphic virus. This will decrease sig-
nificantly the number of different variants an antivirus software has to scan
for. If there was an efficient way to get a random generation of a meta-
morphic malware, canonicalize its code, and turn it into a simplified form
that can be recognised by a scanner as member of a specific virus family, its
detection would be an easy case. This simplified form is what Lakhotia and
Mohammed name as the “zero” form. There are many papers written about
this method, with every researcher trying a different way to canonicalize the
malware code, but the outcome is the same: A simplified code form, which
would be used to extract a detection signature. More information on this
method can be found in [56], [51], [57], and [58].

The research for this thesis showed that there is not enough research
on other metamorphic malware, except computer viruses. Some research
should be done in the field of metamorphism to malware, such as worms,
Trojans, and spyware. I have found no references to individual metamorphic
worms, although I came up with the term many times. Moreover, most of
the metamorphic techniques which are implemented on antivirus scanners
are specifically designed to detect file infecting metamorphic viruses. The
same situation exists for the experimental detection techniques; they are
all designed for and tested on existing metamorphic virus examples. More
research is needed on detection techniques that are able to capture meta-
morphic network worms or spyware.

83

Bibliography

[1] Alun Michael, Chris Poter, and Andrew Beard. Information security
breaches survey 2006. Technical report, PriceWaterhouseCoopers, 2006.

[2] Symantec Security Response Team. Symantec internet security threat
report. Technical Report XI, Symantec Corporation, March 2007.

[3] Mihai Christodorescu and Somesh Jha. Static analysis of executables
to detect malicious patterns. In SSYM’03: Proceedings of the 12th
conference on USENIX Security Symposium, pages 12–12, Berkeley,
CA, USA, 2003. USENIX Association.

[4] Fred Cohen. Computer Viruses. PhD thesis, University of Southern
California, 1986.

[5] Darrell M. Kienzle and Matthew C. Elder. Recent worms: a survey
and trends. In WORM ’03: Proceedings of the 2003 ACM workshop on
Rapid malcode, pages 1–10, New York, NY, USA, 2003. ACM Press.

[6] F. Cohen. Computer viruses: theory and experiments. Comput. Secur.,
6(1):22–35, 1987.

[7] Peter Szor. The Art of Computer Virus Research and Defense. Addison
Wesley Professional, 1 edition, February 2005.

[8] Roger A. Grimes. Malicious Mobile Code: Virus Protection for Win-
dows. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[9] Mark Ludwig. The Giant Black Book of Computer Viruses. American
Eagle Publications, Inc, 1995.

[10] Fred Cohen. A formal definition of computer worms and some related
results. Comput. Secur., 11(7):641–652, 1992.

[11] Dan Ellis. Worm anatomy and model. In WORM ’03: Proceedings of
the 2003 ACM workshop on Rapid malcode, pages 42–50, New York,
NY, USA, 2003. ACM Press.

84

[12] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. Inside the slammer worm. IEEE Se-
curity and Privacy, 01(4):33–39, 2003.

[13] Eugene H. Spafford. The internet worm program: an analysis. SIG-
COMM Comput. Commun. Rev., 19(1):17–57, 1989.

[14] Sophos White Paper. Security threat report 2007. Technical report,
Sophos, 2007.

[15] Thomas F. Stafford and Andrew Urbaczewski. Spyware: The ghost
in the machine. Communications of the Association for Information
Systems, 14:291–306, 2004.

[16] Sophos White Paper. Spyware: Securing gateway and endpoint against
data theft. Technical report, Sophos, 2007.

[17] Symantec Security Response. Windows rootkit overview. Online.

[18] David Harley and Andrew Lee. The root of all evil? - rootkits revealed.
Online.

[19] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, He-
len J. Wang, and Jacob R. Lorch. Subvirt: Implementing malware with
virtual machines. In SP ’06: Proceedings of the 2006 IEEE Symposium
on Security and Privacy (S&P’06), pages 314–327, Washington, DC,
USA, 2006. IEEE Computer Society.

[20] Joanna Rutkowska and Alexander Tereshkin. Blue pill project.
www.bluepillproject.org, 2007.

[21] Joanna Rutkowska. www.invisiblethings.org, 2006.

[22] Peter Szor. Virus analysis 1: Beast regards. Virus Bulletin, June 1999.

[23] Peter Ször and Peter Ferrie. Hunting for metamorphic. In Virus Bul-
letin Conference, September 2001.

[24] Prabhat K. Singh and Arun Lakhotia. Analysis and detection of com-
puter viruses and worms: an annotated bibliography. SIGPLAN Not.,
37(2):29–35, 2002.

[25] Frederic Perriot and Peter Ferrie. Principles and practise of x-raying.
In Virus Bulletin Conference, pages 51–56, September 2004.

[26] Malivanchuk Taras. Epo - what is next? Virus Bulletin, pages 8–9,
March 2002.

[27] Kaspersky Labs. Kaspersky anti-virus engine technology. On-line, 2005.

85

[28] Peter Ferrie. Attacks on virtual machines. In AVAR Conference, pages
128–143, December 2006.

[29] Fridrik Skulason. Virus encryption techniques. Virus Bulletin, pages
13–16, November 1990.

[30] Peter Szor. Junkie memorial. Virus Bulletin, pages 6–8, September
1997.

[31] Carey Nachenberg. Computer virus-antivirus coevolution. Commun.
ACM, 40(1):46–51, 1997.

[32] Fridrik Skulason. 1260 - the variable virus. Virus Bulletin, page 12,
March 1990.

[33] Peter Szor. The marburg situation. Virus Bulletin, pages 8–10, Novem-
ber 1998.

[34] Ruo Ando, Nguyen Anh Quynh, and Yoshiyasu Takefuji. Resolution
based metamorphic computer virus detection using redundancy con-
trol strategy. In WSEAS Conference, Tenerife, Canary Islands, Spain,
December 2005.

[35] Mohamed R. Chouchane and Arun Lakhotia. Using engine signature
to detect metamorphic malware. In WORM ’06: Proceedings of the 4th
ACM workshop on Recurring malcode, pages 73–78, New York, NY,
USA, 2006. ACM Press.

[36] Arun Lakhotia, Aditya Kapoor, and Eric Uday Kumar. Are metamor-
phic computer viruses really invisible? part 1. Virus Bulletin, pages
5–7, December 2004.

[37] Zhihong Zuo, Qing-xin Zhu, and Ming-tian Zhou. On the time com-
plexity of computer viruses. IEEE Transactions on information theory,
51(8):2962–2966, August 2005.

[38] Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane R.
Chouchane, and Arun Lakhotia. The design space of metamorphic
malware. In Proceedings of the 2nd International Conference on Infor-
mation Warfare, March 2007.

[39] Peter Szor. The new 32-bit medusa. Virus Bulletin, pages 8–10, De-
cember 2000.

[40] Rodelio G. Finones and Richard t. Fernandez. Solving the metamorphic
puzzle. Virus Bulletin, pages 14–19, March 2006.

[41] Myles Jordan. Dealing with metamorphism. Virus Bulletin, pages 4–6,
Octomber 2002.

86

[42] Peter Ferrie and Peter Szor. Zmist oportunities. Virus Bulletin, pages
6–7, March 2001.

[43] Frederic Perriot, Peter Szor, and Peter Ferrie. Striking similarites:
Win32/simile and metamorphic virus code. Technical report, Syman-
tec, 2003.

[44] Frederic Perriot. Linux.simile. www.symantec.com, February 2007.

[45] Arun Lakhotia and Prabhat K. Singh. Challenges in getting ’formal’
with viruses. Virus Bulletin, pages 15–19, September 2003.

[46] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and Peter Wol-
stenholme. Modeling Software with Finite State Machines: A Practical
Approach. Number 0-8493-8086-3. Taylor & Francis Group, LLC, 1
edition, 2006.

[47] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting
self-mutating malware using control-flow graph matching. In DIMVA,
pages 129–143, 2006.

[48] Matt Webster and Grant Malcolm. Detection of metamorphic computer
viruses using algebraic specification. Journal in Computer Virology,
2(3):149–161, December 2006. DOI: 10.1007/s11416-006-0023-z.

[49] José Meseguer and Grigore Rosu. The rewriting logic semantics project.
Theor. Comput. Sci., 373(3):213–237, 2007.

[50] Wing Wong and Mark Stamp. Hunting for metamorphic engines. Jour-
nal in Computer Virology, 2(3):211–229, 2006.

[51] Arun Lakhotia and Moinuddin Mohammed. Imposing order on program
statements to assist anti-virus scanners. In WCRE ’04: Proceedings
of the 11th Working Conference on Reverse Engineering (WCRE’04),
pages 161–170, Washington, DC, USA, 2004. IEEE Computer Society.

[52] McAfee. Mcafee virtual criminology report. Technical report, McAfee,
Inc, July 2005.

[53] Sophos. Security threat report. update 07/2007. Technical report,
Sophos, July 2007.

[54] Peter Szor. Personal Communcations, August 2007.

[55] Symantec Security Response Team. Symantec internet security threat
report. Technical Report X, Symantec Corporation, September 2006.

87

[56] Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane, and
Arun Lakhotia. Normalizing metamorphic malware using term rewrit-
ing. In SCAM ’06: Proceedings of the Sixth IEEE International Work-
shop on Source Code Analysis and Manipulation, pages 75–84, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[57] Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T.
Chong. On deriving unknown vulnerabilities from zero-day polymor-
phic and metamorphic worm exploits. In Proceedings of the 12th ACM
Conference on Computer and Communications Security (CCS), pages
235–248, November 2005.

[58] Moinuddin Mohammed and Arun Lakhotia. A method to detect meta-
morphic computer viruses. The IEEE Computer Society’s Student Mag-
azine, 10(1):24–36, 2003.

88

	Introduction
	Motivation
	Outline
	Final Remarks

	Introduction to Malicious Software
	Viruses
	Worms
	Trojan Horses
	Spyware
	Rootkits

	Virus Detection Mechanisms
	First-Generation Scanners
	String Scanning
	Wildcards
	Mismatches
	Generic Detection
	Bookmarks
	Top-and-Tail Scanning
	Entry-Point and Fixed-Point Scanning

	Second-Generation Scanners
	Smart Scanning
	Skeleton Detection
	Nearly Exact Identification
	Exact Identification
	Heuristics Analysis

	Algorithmic Scanning Methods
	Filtering
	Static Decryptor Detection
	X-RAY Scanning

	Code Emulation
	Dynamic Decryptor Detection

	Advanced Code Evolution Techniques
	Encrypted Viruses
	Oligomorphic Viruses
	Polymorphic Viruses
	The 1260 virus
	The Dark Avenger Mutation Engine (MtE)
	Polymorphic Viruses for Windows

	Metamorphic Viruses
	Introduction
	The Metamorphic Virus
	A formal definition
	Anatomy of a Metamorphic Virus
	The Metamorphic Virus According to a Virus Writer

	Metamorphic Techniques
	Garbage Code Insertion
	Register usage exchange
	Permutation Techniques
	Insertion of Jump Instructions
	Instruction Replacement
	Host Code Mutation
	Code Integration

	Advanced Metamorphic Viruses
	Win95/Zmist
	{Win32, Linux}/Simile

	The Virus Evolution: A Simple Comparison

	Metamorphic Virus Detection
	The Weakness of Metamorphic Viruses
	Geometric Detection
	Wildcard String and Half-Byte Scanning
	Code Disassembling
	Using Emulators
	Using Negative and Positive Features
	Using Emulator-Based Heuristics
	Dummy Loops Detection
	Stack Decryption Detection

	Code Transformation Detection
	Subroutine Depermutation
	Using Regular Expressions and DFA
	Experimental Detection Techniques
	Detection Using Engine Signature
	Detection Using Redundancy Control Strategy
	Detection Using Control-Flow Graph Matching
	Detection Using Algebraic Specification
	Hidden Markov Models
	Zeroing Transformation

	Conclusions and the Future
	Current Trends in Malware
	Trends in Metamorphic Malware
	Future Work

	Bibliography

