Preventing Stack-based
Buffer Overflows

CMSC 426 - Computer Security

Buffer Overflows Today

® Vulnerabilities persist despite protection

e A vulnerability announcement from 5
February 2018

® You can find plenty of published buffer
overflow vulnerabilities:

o National Vulnerability Database

® US Computer Emergency Response

Outline

o Buffer Overflows Today

® Safe Programming

® Protection Technologies

Safe Programming

e Avoid unsafe functions. Use safe
alternatives; for example:

Unsafe | Safe

Description

strcpy | strncpy

Copy a string

sprintf |snprintf

Formatted print to a string

strcat | strncat

Concatenate strings

gets fgets

Read string until newline or EOF

#include <stdio.h>
#define BUFLEN 20

main(int argc, char *argv[]) {
char name [BUFLEN] ;

if (argec == 1) {

} else {
fgets (name, BUFLEN, stdin);

}

printf ("%$s\n", name) ;

More Safe Programming

® Always check user input ... but it’s hard to
catch every possible user error.

® There are tools that help identify unsafe
programming, memory leaks, etc., e.g.
Rational Purify, Insure++, Valgrind (Open
Source).

Will use
james:it430 cmarron$ gcc gets_fgets
james:it430 cmarron$./a.out
warning: this program uses gets(), which is unsafe.
XXXXXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XX XX XX XXX
XXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XX XXX XXX XXX
XXXXXX XXX XXX XXX XXX XXX XXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXX
XXXXXXXX
XXXXXXXXXXXX XXX XXX XXX XXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXXXX
XXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX annmaans FXXXXXXXX
XXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XX XX XXX TXXXXX
XXXXXKXXX Will use fgets()
Segmentation fault: 11
james:it430 cmarron$./a.out x
XXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XX XXX XXX XXX
XXXXXXXXXX XXX XXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXX XX XX XXX
XXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXXXXXXX
XXXXXXXXXXXXXXXXKXKXX
james:it430 cmarron$

Random Canaries

® Run-time protection, but may be provided by
the compiler (e.g. GCC’s stack protector).

e Random value (the canary) on stack
between local variables and return address

e Change in canary value indicates a buffer
overflow - stop execution

e Inflicts some additional overhead on code

Stack with Canary

Return Address Oxbffff498

Random Canary OxalB8a6fé6ec

0x00000000

0x00000000

Buffer Overflow

0x00000000

Start of char check[64] 0x00000000

Address Space Layout
Randomization

® Process address space re-arranged randomly

® More difficult for attacker to determine
addresses of shellcode, libraries, etc.

® E.g return-to-libc requires exact address;
ASLR makes this difficult

e |Implemented to one degree or another in all
major OSs (including mobile OSs).

Stack Code Execution

e A standard buffer overflow attack involves
executing shellcode on the stack

® One means of protection is to disallow execution
of code on the stack

e By default, Linux disallows stack execution, but it
can be enabled by flipping a bit in the ELF header:

-z execstack option with GCC
or
execstack utility

Linux ASLR

® For Ubuntu, ASLR has been turned-on by
default, at least to some degree, since 6.06.

® Part of the OS; not controlled by the
compiler.

® Disabling ASLR requires root access:

sysctl -w kernel.randomize va_ space=0

Linux Summary Return Address Defense

® Suppose you wanted to write a buffer overflow e Encrypt the return addresses; decrypted
attack for Linux (Ubuntu, at least); you would when the address is loaded into a register

have to disable three protections...
L PointGuard system XORs return address with

I. Turn-off stack protection with the —fno-stack- o :
32-bit “key”’; decodes at return time.

protector compile option.
. Allow for an executable stack with the —z execstack ® Save copy of return address in protected
linker option. memory; at return time, compare address

. Turn-off ASLR with the system command sysctl -w on stack with saved address

kernel.randomi =0 :
AR A E.g. Stackshield or Return Address Defender

Next time: Malicious Software

