
Preventing Stack-based
Buffer Overflows

CMSC 426 - Computer Security

Outline

• Buffer Overflows Today

• Safe Programming

• Protection Technologies

Buffer Overflows Today

• Vulnerabilities persist despite protection

• A vulnerability announcement from 5
February 2018

• You can find plenty of published buffer
overflow vulnerabilities:

• National Vulnerability Database

• US Computer Emergency Response

Safe Programming

• Avoid unsafe functions. Use safe
alternatives; for example:

Unsafe Safe Description

strcpy strncpy Copy a string

sprintf snprintf Formatted print to a string

strcat strncat Concatenate strings

gets fgets Read string until newline or EOF

#include <stdio.h>
#define BUFLEN 20

main(int argc, char *argv[]) {

 char name[BUFLEN];

 if (argc == 1) {

 gets(name);

 } else {

 fgets(name, BUFLEN, stdin);

 }

 printf("%s\n", name);

}

james:it430 cmarron$ gcc gets_fgets.c
james:it430 cmarron$./a.out
warning: this program uses gets(), which is unsafe.
xxx
xxx
xxx
xxxxxxxx
xxx
xxx
xxx
xxxxxxxx
Segmentation fault: 11
james:it430 cmarron$./a.out x
xxx
xxx
xxx
xxxxxxxx
xxxxxxxxxxxxxxxxxxx
james:it430 cmarron$

Will use gets()

Will use fgets()

More Safe Programming

• Always check user input ... but it’s hard to
catch every possible user error.

• There are tools that help identify unsafe
programming, memory leaks, etc., e.g.
Rational Purify, Insure++, Valgrind (Open
Source).

Random Canaries

• Run-time protection, but may be provided by
the compiler (e.g. GCC’s stack protector).

• Random value (the canary) on stack
between local variables and return address

• Change in canary value indicates a buffer
overflow - stop execution

• Inflicts some additional overhead on code

Return Address 0xbffff498

Random Canary 0xa18a6f6c

0x00000000

0x00000000

0x00000000

Start of char check[64] 0x00000000

⋮

Stack with Canary

Bu
ffe

r
O

ve
rfl

ow

Stack Code Execution

• A standard buffer overflow attack involves
executing shellcode on the stack

• One means of protection is to disallow execution
of code on the stack

• By default, Linux disallows stack execution, but it
can be enabled by flipping a bit in the ELF header:

-z execstack option with GCC
or

execstack utility

Address Space Layout
Randomization

• Process address space re-arranged randomly

• More difficult for attacker to determine
addresses of shellcode, libraries, etc.

• E.g. return-to-libc requires exact address;
ASLR makes this difficult

• Implemented to one degree or another in all
major OSs (including mobile OSs).

Linux ASLR

• For Ubuntu, ASLR has been turned-on by
default, at least to some degree, since 6.06.

• Part of the OS; not controlled by the
compiler.

• Disabling ASLR requires root access:

sysctl –w kernel.randomize_va_space=0

Linux Summary

• Suppose you wanted to write a buffer overflow
attack for Linux (Ubuntu, at least); you would
have to disable three protections...
1. Turn-off stack protection with the –fno-stack-

protector compile option.

2. Allow for an executable stack with the –z execstack
linker option.

3. Turn-off ASLR with the system command sysctl –w
kernel.randomize_va_space=0.

Return Address Defense

• Encrypt the return addresses; decrypted
when the address is loaded into a register

PointGuard system XORs return address with
32-bit “key”; decodes at return time.

• Save copy of return address in protected
memory; at return time, compare address
on stack with saved address

E.g. Stackshield or Return Address Defender

Next time: Malicious Software

