Outline

Random Number
GeﬂeranOn Properties of PRNGs

CMSC 426 - Computer Security LCGs

NIST SP 800-90A

Blum, Blum, Shub

Random Number Uses The “P” in “PRNG”

Don’t typically have access to a true random number
generator (RNG).

Generation of symmetric keys ; i
RNGs require some source of random noise, i.e.

Generation of primes (p and g) for RSA special hardware.

. o Instead, use an algorithm that produces numbers that
Generation of secret keys for Diffie-Hellman appear random - a Pseudo-Random Number

; Generator or PRNG.
Nonces for cryptographic protocols

NIST documents also refer to a PRNG as a
Deterministic Random Bit Generator (DRBG).

4
CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018




PRNG Requirements

+ Statistical Properties. \What does it mean to “appear
random?”

* Output of the PRNG should be uniformly
distributed.

« Outputs should appear independent. Can not
infer a value from a previous or future value.

* Unpredictability. For cryptography, the statistics don’t
matter so much as that the values be unpredictable.

LCG Examples

sobxamplesa—ic—
s Eampleso—ulaci=0um=82 X a=udli

suxarplera=ibaci=i(umu= 32 0l

A simple PRNG

* The Linear Congruential Generator (LCG) is
perhaps the most commonly used PRNG.

» Given constants a, ¢, and mand an initial seed
Xo, generate numbers according to the formula

Xne1=(@Xn+ c)mod m
* The selection of the constants is important.

Good LCGs?

* What would make an LCG good?

1. Full-period generating — generates all
values 0 < X< m.

. Should appear random as determined by a
battery of statistical tests.

. Efficient on current architectures (64 bit).

8

CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018




| CG Parameters

If nis a power of two, choose a, ¢ such that
1. cisrelatively prime to n (so ¢ is odd).
2. a-1isdivisible by 4.

Hull & Dobell, Random Number Generators, SIAM Review, Vol. 4, No. 3 (July

1962), pp. 230 - 254.

Some examples from Wikipedia:

n a C
glibc 281 | 1103516245 12345
MS Quick C | 232 214013 2531011

NIST SP 800-90A

PRNG based on AES in CTR mode which is
suitable for cryptographic applications.

Note: NIST uses the term Deterministic Random
Bit Generator (DRBG) rather than PRNG.

The algorithm consists of separate Initialization
and Generation phases.

We’'ll see a simplified version of the standard
using AES-128...

LCGs are Weak

» Unfortunately, LCGs are not appropriate for
cryptography.

 Example: n= 256, a= 3, c = 7. We can recover
the values n, a, and c just by observing X

» Python uses a PRNG called a Mersenne Twister,
which is better than an LCG, but still not good
enough for cryptography.

Initialization

+ The following steps initialize the PRNG:

il

Obtain 256 bits of random "seed" data; the first 128 bits
will be denoted (Kj), and the remaining 128 bits will be

denoted (V).

. Initialize V and Kto zero.

. Update V « V+ 1 mod 228,

. Encrypt V with key K; save the output K"
. Update V « V + 1 mod 2'%8,

. Encrypt V with key K; save the output V'
. SetK=Ky® K'andV=V,®V"

12

CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018




Generation

+ Generation of n blocks of pseudo-random data:

. Update V « V+ 1 mod 2'%.
Encrypt V with key K; save output as X.

. Update Output « Concatenate(Output, X).
. Repeat steps 1 - 3 a total of ntimes.
. Return Output.

+ After generation, V and K are updated using steps 3 - 7 of
the Initialization.

+ A counter tracks the total number of pseudo-random bits
produced; after some threshold, the PRNG must be re-
initialized.

Blum, Blum, Shub

* We've seen a simple PRNG that isn'’t suitable for

cryptography (LCG) and a complicated
generator that is (SP 800-90A).

* The Blum, Blum, Shub (BBS) generator is simple
and secure — but has its own limitations.

» BBS is provably secure if used correctly; its
security is based on the difficulty of factoring.

Testing

SP 800-90A states that known answer testing
“shall” be performed for various sub-functions in
implementations of the PRNG.

Known answer testing is just running the algorithm
with inputs and outputs specified in the standard.

Implementation requires patience, attention to
detail, and extensive testing — it is preferable to

use an existing, validated implementation than to
write your own.

BBS Parameters

Construct a composite modulus M = p- g with
the following properties:

e pand g are primes of “cryptographic size” (at
least 512 bits each)

e pand g are both congruent to 3 mod 4.

Generate a seed xo, a random positive integer
less than M and relatively prime to M.

16

CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018




BBS Generation

* The state of the generator is updated according
to the rule:

Xi+1 = X2 mod M.

From each x;, extract the low-order bit. That is,
the pseudo-random sequence is:

o= yaimoel 2, 1=, 2,8, ...

< Example=p= . q.= 1l xn =1’

Which PRNG to use?

For non-cryptographic applications, such as
simulations, an LCG is usually sufficient.

For large volumes of pseudo-random bits, a
PRNG from SP 800-90A will be secure and
efficient.

For small volumes of critical pseudo-random bits,
BBS would be a reasonable choice.

There are many other PRNGS: this is just a sample!

Security and Efficiency

-+ Given a sequence of b values, it is “difficult” to

recover a state x; (future or past).

- The difficulty is proven to be equivalent to a hard

mathematical problem, which is in turn is
believed to be equivalent to factoring M.

- So what is the downside? Efficiency. We are

computing one modular exponentiation for each
bit of pseudo-random output.

Next time: Cryptography Lab

20

CMSC 426 - RNG and PRNG - SP2018.key - March 14, 2018




