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Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can
happen at three different stages.

B Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if
starting location changes.

B Load time: Must generate relocatable code if memory
location is not known at compile time.

B Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers).
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Logical vs. Physical Address Space

B The concept of a logical address space that is bound to a
separate physical address space is central to proper
memory management.

Logical address — generated by the CPU; also referred to as
virtual address.
Physical address — address seen by the memory unit.

B Logical and physical addresses are the same in compile-
time and load-time address-binding schemes; logical
(virtual) and physical addresses differ in execution-time
address-binding scheme.
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Memory-Management Unit (mmu)

B Hardware device that maps virtual to physical address.

B In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent to memory.

B The user program deals with logical addresses; it never
sees the real physical addresses.
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Dynamic Loading

B Routine is not loaded until it is called

B Better memory-space utilization; unused routine is never
loaded.

B Useful when large amounts of code are needed to handle

infrequently occurring cases.

B No special support from the operating system is required
implemented through program design.

Operating System Concepts

9.8

Silberschatz, Galvin and Gagne ©2002>')§Q







Overlays for a Two-Pass Assembler
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Swapping

B A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution.

B Backing store — fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images.

B Roll out, roll in — swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

B Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

B Modified versions of swapping are found on many systems, i.e.,
UNIX, Linux, and Windows.
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Schematic View of Swapping
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Contiguous Allocation

B Main memory usually into two partitions:

+ Resident operating system, usually held in low memory with
interrupt vector.

+ User processes then held in high memory.

B Single-partition allocation

+ Relocation-register scheme used to protect user processes
from each other, and from changing operating-system code
and data.

+ Relocation register contains value of smallest physical
address; limit register contains range of logical addresses —
each logical address must be less than the limit register.
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Hardware Support for Relocation and Limit Registers
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Contiguous Allocation (Cont.)

B Multiple-partition allocation
Hole — block of available memory; holes of various size are
scattered throughout memory.
When a process arrives, it is allocated memory from a hole
large enough to accommodate it.
Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

oS oS oS oS
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> |:> |:> process 10
process 2 process 2 process 2 process 2
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Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes.

B First-fit: Allocate the first hole that is big enough.

B Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size.
Produces the smallest leftover hole.

B Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization.
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Fragmentation

B External Fragmentation — total memory space exists to
satisfy a request, but it is not contiguous.

B Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size difference
is memory internal to a partition, but not being used.

B Reduce external fragmentation by compaction

Shuffle memory contents to place all free memory together
in one large block.
Compaction is possible only if relocation is dynamic, and is
done at execution time.
1/0O problem

v Latch job in memory while it is involved in 1/O.

v Do /O only into OS buffers.
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Address Translation Architecture
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Paging Example
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Paging Hardware With TLB
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Effective Access Time

B Associative Lookup = € time unit
B Assume memory cycle time is 1 microsecond

B Hit ratio — percentage of times that a page number is
found in the associative registers; ration related to
number of associative registers.

B Hit ratio = o
B Effective Access Time (EAT)
EAT=(1+¢e)o+(2+¢)(1—-0)
=2+e—0
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Two-Level Paging Example

B A logical address (on 32-bit machine with 4K page size) is
divided into:

a page number consisting of 20 bits.
a page offset consisting of 12 bits.

B Since the page table is paged, the page number is further
divided into:

a 10-bit page number.
a 10-bit page offset.
B Thus, a logical address is as follows:

page number page offset

e d

10 10 12

where p;is an index into the outer page table, and p, is the
displacement within the page of the outer page table.
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Two-Level Page-Table Scheme
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Hashed Page Table
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Inverted Page Table

B One entry for each real page of memory.
B Entry consists of the virtual address of the page stored in

that real memory location, with information about the
process that owns that page.

B Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs.

B Use hash table to limit the search to one — or at most a
few — page-table entries.
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Segmentation Architecture (Cont.)

B Protection. With each entry in segment table associate:
validation bit = 0 = illegal segment
read/write/execute privileges
B Protection bits associated with segments; code sharing
occurs at segment level.
B Since segments vary in length, memory allocation is a
dynamic storage-allocation problem.
B A segmentation example is shown in the following
diagram
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Example of Segmentation
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Sharing of Segments
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Segmentation with Paging — MULTICS

B The MULTICS system solved problems of external
fragmentation and lengthy search times by paging the
segments.

B Solution differs from pure segmentation in that the
segment-table entry contains not the base address of the
segment, but rather the base address of a page table for
this segment.
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MULTICS Address Translation Scheme
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