














The Critical-Section Problem

B nprocesses all competing to use some shared data

B Each process has a code segment, called critical section,
in which the shared data is accessed.

B Problem — ensure that when one process is executing in

its critical section, no other process is allowed to execute
in its critical section.

Operating System Concepts 711 Silberschatz, Galvin and Gagne ©20021)§Q

Solution to Critical-Section Problem

1. Mutual Exclusion. If process P;is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is
granted.

® Assume that each process executes at a nonzero speed

® No assumption concerning relative speed of the n
processes.

Operating System Concepts 712 Silberschatz, Galvin and Gagne ©20021)§Q























































Implementation region x when Bdo S

B Associate with the shared variable x, the following
variables:
semaphore mutex, first-delay, second-delay;
int first-count, second-count;

B Mutually exclusive access to the critical section is
provided by mutex.

W If a process cannot enter the critical section because the
Boolean expression B is false, it initially waits on the
first-delay semaphore; moved to the second-delay
semaphore before it is allowed to reevaluate B.

Operating System Concepts 7.47 Silberschatz, Galvin and Gagne ©20021)§Q

Implementation

B Keep track of the number of processes waiting on first-
delay and second-delay, with first-count and second-
count respectively.

B The algorithm assumes a FIFO ordering in the queuing of
processes for a semaphore.

B For an arbitrary queuing discipline, a more complicated
implementation is required.

Operating System Concepts 7.48 Silberschatz, Galvin and Gagne ©20021)§Q







Schematic View of a Monitor

entry queue

shared data

il

Y-

operations

initialization
code
Operating System Concepts 751 Silberschatz, Galvin and Gagne ©2002>'Y#&

Monitor With Condition Variables

entry queue

shared data

operations

initialization
code
Operating System Concepts 7.52 Silberschatz, Galvin and Gagne ©2002>'Y#&

queues associated with
X, y conditions













B Conditional-wait construct: x.wait(c);

B Check two conditions to establish correctness of system:

Operating System Concepts

Monitor Implementation

¢ — integer expression evaluated when the wait operation is
executed.

value of ¢ (a priority number) stored with the name of the
process that is suspended.

when x.signal is executed, process with smallest
associated priority number is resumed next.

User processes must always make their calls on the monitor
in a correct sequence.

Must ensure that an uncooperative process does not ignore
the mutual-exclusion gateway provided by the monitor, and

try to access the shared resource directly, without using the
access protocols.

7.59 Silberschatz, Galvin and Gagne ©2002>')§Q

Operating System Concepts

Solaris 2 Synchronization

Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

Uses adaptive mutexes for efficiency when protecting
data from short code segments.

Uses condition variables and readers-writers locks when
longer sections of code need access to data.

Uses turnstiles to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock.

7.60 Silberschatz, Galvin and Gagne ©2002>')§Q







