

Layered File System

application programs

logical file system

v

file-organization module

v

basic file system

v

1/0O control

devices 3}9! 9
Operating System Concepts 12.3 Silberschatz, Galvin and Gagne ©2002 =

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks

Operating System Concepts 124 Silberschatz, Galvin and Gagne ©2002>'}§Q

open (filename)

][]
1]

directory structure

directory structure

»]

file control block

user space

kernel memory

(a)

secondary storage

read (index) —

per-process system-wide
open-file table open-file table

file control block

user space

kernel memory

(b)

secondary storage

Operating System Concepts

127

Virtual File Systems

B Virtual File Systems (VFS) provide an object-oriented
way of implementing file systems.

B The APl is to the VFS interface, rather than any specific
type of file system.

B VFS allows the same system call interface (the API) to be
used for different types of file systems.

Silberschatz, Galvin and Gagne ©2002>')§Q

file-system interface

4

VFS interface

Y

y

local file system
type 1

local file system
type 2

typ

remote file system

e 1

A 4

A 4

Y

B

network

Operating System Concepts

128

Silberschatz, Galvin and Gagne ©2002

Schematic View of Virtual File System

[T

Contiguous Allocation

B Each file occupies a set of contiguous blocks on the disk.

B Simple — only starting location (block #) and length

(number of blocks) are required.

B Random access.

B Wasteful of space (dynamic storage-allocation problem).

B Files cannot grow.

Operating System Concepts

1211

Silberschatz, Galvin and Gagne ©2002>')§Q

Operating System Concepts

Contiguous Allocation of Disk Space

———————
N~

count
o] 17 2[] 3]
4[] s[] 6I:|f7I:|
8] o101 11[]
12[|13|:|14|:|t1r5|:|
16[]17[]18[]19[]
2o[|21|£1|32“2|:|23|:|
24252627

list

28[]29[]30[]31[]

directory
file start length
count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

N~

12.12

Silberschatz, Galvin and Gagne ©2002>')§Q

Linked Allocation (Cont.)

B Simple — need only starting address

B Free-space management system — no waste of space
B No random access

B Mapping

Q

LA/51 1<
R

Block to be accessed is the Qth block in the linked chain
of blocks representing the file.
Displacement into block = R + 1
File-allocation table (FAT) — disk-space allocation used by
MS-DOS and OS/2.

Operating System Concepts 12.15 Silberschatz, Galvin and Gagne ©20021)§Q

Linked Allocation

_(> directory

file start end

OD 1 2D SD jeep 9 25

8[| fofig[10f3] 11[]
12[J13[] 14115
16[1]17[J18[] 19
20[J]21[f22[]23[]
24 25[=26[]27[]

28[] 29[3031
~_

Operating System Concepts 12.16 Silberschatz, Galvin and Gagne ©20021)§Q

start block

end-of-file

no. of disk blocks -1

Example of Indexed Allocation

directory

file index block

jeep 19
[l

28[29[]30[]31[]

Operating System Concepts 12.19 Silberschatz, Galvin and Gagne ©20021)§Q

Indexed Allocation (Cont.)

B Need index table
B Random access

B Dynamic access without external fragmentation, but have
overhead of index block.

B Mapping from logical to physical in a file of maximum size
of 256K words and block size of 512 words. We need
only 1 block for index table.

Q
e
LA/512

R

Q = displacement into index table
R = displacement into block

Operating System Concepts 12.20 Silberschatz, Galvin and Gagne ©20021)§Q

Indexed Allocation — Mapping (Cont.)

—

\

outer-index

index table file

Operating System Concepts 12.23 Silberschatz, Galvin and Gagne ©2002>'}§Q

Combined Scheme: UNIX (4K bytes per block)

mode

owners (2)

timestamps (3)

size block

count

data

direct blocks

i bhi

T data | > e |
single indirect — . . ata
double indirect - | =—[data |

triple indirect |— > _,‘_’@
| S—»{ data |

Operating System Concepts 12.24 Silberschatz, Galvin and Gagne ©2002>'}§Q

é

\ 4

Free-Space Management (Cont.)

B Need to protect:

Operating System Concepts

Pointer to free list
Bit map
v Must be kept on disk
v Copy in memory and disk may differ.

v Cannot allow for block[/] to have a situation where bit[/] =
1 in memory and bit[/] = 0 on disk.

Solution:
v Set bit[/] = 1 in disk.
v Allocate block]/]
v Set bit[/] = 1 in memory

12.27 Silberschatz, Galvin and Gagne ©2002>'}§Q

Operating System Concepts

Linked Free Space List on Disk

free-space list head ~——

28[J29[]30[]31[]
v ne ©2002>'}§’Q

220" o

U track |
I buffer 1
L]

controller

Page Cache

B A page cache caches pages rather than disk blocks
using virtual memory techniques.

B Memory-mapped I/O uses a page cache.

B Routine 1/0 through the file system uses the buffer (disk)
cache.

B This leads to the following figure.

Operating System Concepts 12.31 Silberschatz, Galvin and Gagne ©2002>'}§A?

I/0 Without a Unified Buffer Cache

I/O using

TCBHTET P2 O read() and write()

F 3

4

page cache

N\

buffer cache

J

A 4

file system

Operating System Concepts 12.32 Silberschatz, Galvin and Gagne ©2002>'}§A?

The Sun Network File System (NFS)

B An implementation and a specification of a software
system for accessing remote files across LANs (or
WANSs).

B The implementation is part of the Solaris and SunOS
operating systems running on Sun workstations using an
unreliable datagram protocol (UDP/IP protocol and
Ethernet.

Operating System Concepts 12.37 Silberschatz, Galvin and Gagne ©20021)§Q

NFS (Cont.)

B Interconnected workstations viewed as a set of
independent machines with independent file systems,
which allows sharing among these file systems in a
transparent manner.

A remote directory is mounted over a local file system
directory. The mounted directory looks like an integral
subtree of the local file system, replacing the subtree
descending from the local directory.

Specification of the remote directory for the mount operation
is nontransparent; the host name of the remote directory
has to be provided. Files in the remote directory can then
be accessed in a transparent manner.

Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory.

Operating System Concepts 12.38 Silberschatz, Galvin and Gagne ©20021)§Q

NFS (Cont.)

B NFS is designed to operate in a heterogeneous
environment of different machines, operating systems,
and network architectures; the NFS specifications
independent of these media.

B This independence is achieved through the use of RPC
primitives built on top of an External Data Representation
(XDR) protocol used between two implementation-
independent interfaces.

B The NFS specification distinguishes between the services
provided by a mount mechanism and the actual remote-
file-access services.

Operating System Concepts 12.39 Silberschatz, Galvin and Gagne ©20021)§Q

Three Independent File Systems

usr usr

local shared dirZ

dirt

Operating System Concepts 12.40 Silberschatz, Galvin and Gagne ©20021)§Q

Mounting in NFS

U: u:
usr usr
local local
dirt dirt
(a) (b)
Mounts Cascading mounts

Operating System Concepts

12.41 Silberschatz, Galvin and Gagne ©2002>')§Q

Operating System Concepts

NFS Mount Protocol

Establishes initial logical connection between server and
client.
Mount operation includes name of remote directory to be
mounted and name of server machine storing it.
Mount request is mapped to corresponding RPC and forwarded
to mount server running on server machine.
Export list — specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them.
Following a mount request that conforms to its export list,
the server returns a file handle—a key for further accesses.
File handle — a file-system identifier, and an inode number to
identify the mounted directory within the exported file
system.
The mount operation changes only the user’s view and does
not affect the server side.

12.42 Silberschatz, Galvin and Gagne ©2002

[T

NFS Protocol

B Provides a set of remote procedure calls for remote file
operations. The procedures support the following operations:
searching for a file within a directory
reading a set of directory entries
manipulating links and directories
accessing file attributes
reading and writing files
B NFS servers are stateless; each request has to provide a full set
of arguments.
B Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching).
B The NFS protocol does not provide concurrency-control
mechanisms.

Operating System Concepts 12.43 Silberschatz, Galvin and Gagne ©20021)§Q

Three Major Layers of NFS Architecture

B UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors).

B Virtual File System (VFS) layer — distinguishes local files
from remote ones, and local files are further distinguished
according to their file-system types.

The VFS activates file-system-specific operations to handle
local requests according to their file-system types.
Calls the NFS protocol procedures for remote requests.

B NFS service layer — bottom layer of the architecture;
implements the NFS protocol.

Operating System Concepts 12.44 Silberschatz, Galvin and Gagne ©20021)§Q

Schematic View of NFS Architecture

client

system-calls interface l

VFS interface l

server

—»{ VFS interface I

* \ 4 ‘ A 4
other types of UNIX 4.2 file . UNIX 4.2 file
file systems I systems I HES i I MIEE s I systems I
A
v
v RPC/XDR I RPC/XDR I v
|
v disk
‘ network

Operating System Concepts

12.45

Silberschatz, Galvin and Gagne ©2002 - Q

B Performed by breaking the path into component names
and performing a separate NFS lookup call for every pair
of component name and directory vnode.

B To make lookup faster, a directory name lookup cache on
the client’s side holds the vnodes for remote directory

names.

Operating System Concepts

NFS Path-Name Translation

12.46

Silberschatz, Galvin and Gagne ©2002>')§Q

