
Silberschatz, Galvin and Gagne 2002A.1Operating System Concepts

Module A: The FreeBSD System

� History
� Design Principles
� Programmer Interface
� User Interface
� Process Management
� Memory Management
� File System
� I/O System
� Interprocess Communication

Silberschatz, Galvin and Gagne 2002A.2Operating System Concepts

History

� First developed in 1969 by Ken Thompson and Dennis Ritchie
of the Research Group at Bell Laboratories; incorporated
features of other operating systems, especially MULTICS.

� The third version was written in C, which was developed at
Bell Labs specifically to support UNIX.

� The most influential of the non-Bell Labs and non-AT&T UNIX
development groups — University of California at Berkeley
(Berkeley Software Distributions).

✦ 4BSD UNIX resulted from DARPA funding to develop a standard
UNIX system for government use.

✦ Developed for the VAX, 4.3BSD is one of the most influential
versions, and has been ported to many other platforms.

� Several standardization projects seek to consolidate the
variant flavors of UNIX leading to one programming interface
to UNIX.

Silberschatz, Galvin and Gagne 2002A.3Operating System Concepts

History of UNIX Versions

Silberschatz, Galvin and Gagne 2002A.4Operating System Concepts

Early Advantages of UNIX

� Written in a high-level language.
� Distributed in source form.
� Provided powerful operating-system primitives on an

inexpensive platform.
� Small size, modular, clean design.

Silberschatz, Galvin and Gagne 2002A.5Operating System Concepts

UNIX Design Principles

� Designed to be a time-sharing system.
� Has a simple standard user interface (shell) that can be

replaced.
� File system with multilevel tree-structured directories.
� Files are supported by the kernel as unstructured

sequences of bytes.
� Supports multiple processes; a process can easily create

new processes.
� High priority given to making system interactive, and

providing facilities for program development.

Silberschatz, Galvin and Gagne 2002A.6Operating System Concepts

Programmer Interface

� Kernel: everything below the system-call interface and
above the physical hardware.

✦ Provides file system, CPU scheduling, memory
management, and other OS functions through system calls.

� Systems programs: use the kernel-supported system
calls to provide useful functions, such as compilation and
file manipulation.

Like most computer systems, UNIX consists of two separable parts:

Silberschatz, Galvin and Gagne 2002A.7Operating System Concepts

4.4BSD Layer Structure

Silberschatz, Galvin and Gagne 2002A.8Operating System Concepts

System Calls

� System calls define the programmer interface to UNIX
� The set of systems programs commonly available defines

the user interface.
� The programmer and user interface define the context

that the kernel must support.
� Roughly three categories of system calls in UNIX.

✦ File manipulation (same system calls also support device
manipulation)

✦ Process control
✦ Information manipulation.

Silberschatz, Galvin and Gagne 2002A.9Operating System Concepts

File Manipulation

� A file is a sequence of bytes; the kernel does not impose
a structure on files.

� Files are organized in tree-structured directories.
� Directories are files that contain information on how to

find other files.
� Path name: identifies a file by specifying a path through

the directory structure to the file.
✦ Absolute path names start at root of file system
✦ Relative path names start at the current directory

� System calls for basic file manipulation: create, open,
read, write, close, unlink, trunc.

Silberschatz, Galvin and Gagne 2002A.10Operating System Concepts

Typical UNIX Directory Structure

Silberschatz, Galvin and Gagne 2002A.11Operating System Concepts

Process Control

� A process is a program in execution.
� Processes are identified by their process identifier, an

integer.
� Process control system calls

✦ fork creates a new process
✦ execve is used after a fork to replace on of the two

processes’s virtual memory space with a new program
✦ exit terminates a process

✦ A parent may wait for a child process to terminate; wait
provides the process id of a terminated child so that the
parent can tell which child terminated.

✦ wait3 allows the parent to collect performance statistics
about the child

� A zombie process results when the parent of a defunct
child process exits before the terminated child.

Silberschatz, Galvin and Gagne 2002A.12Operating System Concepts

Illustration of Process Control Calls

Silberschatz, Galvin and Gagne 2002A.13Operating System Concepts

Process Control (Cont.)

� Processes communicate via pipes; queues of bytes
between two processes that are accessed by a file
descriptor.

� All user processes are descendants of one original
process, init.

� init forks a getty process: initializes terminal line
parameters and passes the user’s login name to login.

✦ login sets the numeric user identifier of the process to that
of the user

✦ executes a shell which forks subprocesses for user
commands.

Silberschatz, Galvin and Gagne 2002A.14Operating System Concepts

Process Control (Cont.)

� setuid bit sets the effective user identifier of the process
to the user identifier of the owner of the file, and leaves
the real user identifier as it was.

� setuid scheme allows certain processes to have more
than ordinary privileges while still being executable by
ordinary users.

Silberschatz, Galvin and Gagne 2002A.15Operating System Concepts

Signals

� Facility for handling exceptional conditions similar to
software interrupts.

� The interrupt signal, SIGINT, is used to stop a command
before that command completes (usually produced by ^C).

� Signal use has expanded beyond dealing with exceptional
events.

✦ Start and stop subprocesses on demand

✦ SIGWINCH informs a process that the window in which output
is being displayed has changed size.

✦ Deliver urgent data from network connections.

Silberschatz, Galvin and Gagne 2002A.16Operating System Concepts

Process Groups

� Set of related processes that cooperate to accomplish a
common task.

� Only one process group may use a terminal device for I/O
at any time.

✦ The foreground job has the attention of the user on the
terminal.

✦ Background jobs – nonattached jobs that perform their
function without user interaction.

� Access to the terminal is controlled by process group
signals.

Silberschatz, Galvin and Gagne 2002A.17Operating System Concepts

Process Groups (Cont.)

� Each job inherits a controlling terminal from its parent.
✦ If the process group of the controlling terminal matches the

group of a process, that process is in the foreground.

✦ SIGTTIN or SIGTTOU freezes a background process that
attempts to perform I/O; if the user foregrounds that
process, SIGCONT indicates that the process can now
perform I/O.

✦ SIGSTOP freezes a foreground process.

Silberschatz, Galvin and Gagne 2002A.18Operating System Concepts

Information Manipulation

� System calls to set and return an interval timer:
getitmer/setitmer.

� Calls to set and return the current time:
gettimeofday/settimeofday.

� Processes can ask for
✦ their process identifier: getpid
✦ their group identifier: getgid
✦ the name of the machine on which they are executing:

gethostname

Silberschatz, Galvin and Gagne 2002A.19Operating System Concepts

Library Routines

� The system-call interface to UNIX is supported and
augmented by a large collection of library routines

� Header files provide the definition of complex data
structures used in system calls.

� Additional library support is provided for mathematical
functions, network access, data conversion, etc.

Silberschatz, Galvin and Gagne 2002A.20Operating System Concepts

User Interface

� Programmers and users mainly deal with already existing
systems programs: the needed system calls are
embedded within the program and do not need to be
obvious to the user.

� The most common systems programs are file or directory
oriented.

✦ Directory: mkdir, rmdir, cd, pwd
✦ File: ls, cp, mv, rm

� Other programs relate to editors (e.g., emacs, vi) text
formatters (e.g., troff, TEX), and other activities.

Silberschatz, Galvin and Gagne 2002A.21Operating System Concepts

Shells and Commands

� Shell – the user process which executes programs (also
called command interpreter).

� Called a shell, because it surrounds the kernel.
� The shell indicates its readiness to accept another

command by typing a prompt, and the user types a
command on a single line.

� A typical command is an executable binary object file.
� The shell travels through the search path to find the

command file, which is then loaded and executed.
� The directories /bin and /usr/bin are almost always in the

search path.

Silberschatz, Galvin and Gagne 2002A.22Operating System Concepts

Shells and Commands (Cont.)

� Typical search path on a BSD system:

(./home/prof/avi/bin /usr/local/bin
/usr/ucb/bin/usr/bin)

� The shell usually suspends its own execution until the
command completes.

Silberschatz, Galvin and Gagne 2002A.23Operating System Concepts

Standard I/O

� Most processes expect three file descriptors to be open
when they start:

✦ standard input – program can read what the user types

✦ standard output – program can send output to user’s screen
✦ standard error – error output

� Most programs can also accept a file (rather than a
terminal) for standard input and standard output.

� The common shells have a simple syntax for changing
what files are open for the standard I/O streams of a
process — I/O redirection.

Silberschatz, Galvin and Gagne 2002A.24Operating System Concepts

Standard I/O Redirection

Command Meaning of command
% ls > filea direct output of ls to file filea
% pr < filea > fileb input from filea and output to fileb
% lpr < fileb input from fileb
%% make program > & errs save both standard output and

standard error in a file

Silberschatz, Galvin and Gagne 2002A.25Operating System Concepts

Pipelines, Filters, and Shell Scripts

� Can coalesce individual commands via a vertical bar that
tells the shell to pass the previous command’s output as
input to the following command

% ls | pr | lpr
� Filter – a command such as pr that passes its standard

input to its standard output, performing some processing
on it.

� Writing a new shell with a different syntax and semantics
would change the user view, but not change the kernel or
programmer interface.

� X Window System is a widely accepted iconic interface
for UNIX.

Silberschatz, Galvin and Gagne 2002A.26Operating System Concepts

Process Management

� Representation of processes is a major design problem
for operating system.

� UNIX is distinct from other systems in that multiple
processes can be created and manipulated with ease.

� These processes are represented in UNIX by various
control blocks.

✦ Control blocks associated with a process are stored in the
kernel.

✦ Information in these control blocks is used by the kernel for
process control and CPU scheduling.

Silberschatz, Galvin and Gagne 2002A.27Operating System Concepts

Process Control Blocks

� The most basic data structure associated with processes
is the process structure.

✦ unique process identifier

✦ scheduling information (e.g., priority)
✦ pointers to other control blocks

� The virtual address space of a user process is divided
into text (program code), data, and stack segments.

� Every process with sharable text has a pointer form its
process structure to a text structure.

✦ always resident in main memory.

✦ records how many processes are using the text segment

✦ records were the page table for the text segment can be
found on disk when it is swapped.

Silberschatz, Galvin and Gagne 2002A.28Operating System Concepts

System Data Segment

� Most ordinary work is done in user mode; system calls
are performed in system mode.

� The system and user phases of a process never execute
simultaneously.

� a kernel stack (rather than the user stack) is used for a
process executing in system mode.

� The kernel stack and the user structure together compose
the system data segment for the process.

Silberschatz, Galvin and Gagne 2002A.29Operating System Concepts

Finding parts of a process using process structure

Silberschatz, Galvin and Gagne 2002A.30Operating System Concepts

Allocating a New Process Structure

� fork allocates a new process structure for the child
process, and copies the user structure.

✦ new page table is constructed

✦ new main memory is allocated for the data and stack
segments of the child process

✦ copying the user structure preserves open file descriptors,
user and group identifiers, signal handling, etc.

Silberschatz, Galvin and Gagne 2002A.31Operating System Concepts

Allocating a New Process Structure (Cont.)

� vfork does not copy the data and stack to t he new
process; the new process simply shares the page table of
the old one.

✦ new user structure and a new process structure are still
created

✦ commonly used by a shell to execute a command and to
wait for its completion

� A parent process uses vfork to produce a child process;
the child uses execve to change its virtual address
space, so there is no need for a copy of the parent.

� Using vfork with a large parent process saves CPU time,
but can be dangerous since any memory change occurs
in both processes until execve occurs.

� execve creates no new process or user structure; rather
the text and data of the process are replaced.

Silberschatz, Galvin and Gagne 2002A.32Operating System Concepts

CPU Scheduling

� Every process has a scheduling priority associated with it;
larger numbers indicate lower priority.

� Negative feedback in CPU scheduling makes it difficult
for a single process to take all the CPU time.

� Process aging is employed to prevent starvation.
� When a process chooses to relinquish the CPU, it goes to

sleep on an event.
� When that event occurs, the system process that knows

about it calls wakeup with the address corresponding to
the event, and all processes that had done a sleep on the
same address are put in the ready queue to be run.

Silberschatz, Galvin and Gagne 2002A.33Operating System Concepts

Memory Management

� The initial memory management schemes were
constrained in size by the relatively small memory
resources of the PDP machines on which UNIX was
developed.

� Pre 3BSD system use swapping exclusively to handle
memory contention among processes: If there is too
much contention, processes are swapped out until
enough memory is available.

� Allocation of both main memory and swap space is done
first-fit.

Silberschatz, Galvin and Gagne 2002A.34Operating System Concepts

Memory Management (Cont.)

� Sharable text segments do not need to be swapped;
results in less swap traffic and reduces the amount of
main memory required for multiple processes using the
same text segment.

� The scheduler process (or swapper) decides which
processes to swap in or out, considering such factors as
time idle, time in or out of main memory, size, etc.

� In f.3BSD, swap space is allocated in pieces that are
multiples of power of 2 and minimum size, up to a
maximum size determined by the size or the swap-space
partition on the disk.

Silberschatz, Galvin and Gagne 2002A.35Operating System Concepts

Paging

� Berkeley UNIX systems depend primarily on paging for
memory-contention management, and depend only
secondarily on swapping.

� Demand paging – When a process needs a page and the
page is not there, a page fault tot he kernel occurs, a
frame of main memory is allocated, and the proper disk
page is read into the frame.

� A pagedaemon process uses a modified second-chance
page-replacement algorithm to keep enough free frames
to support the executing processes.

� If the scheduler decides that the paging system is
overloaded, processes will be swapped out whole until
the overload is relieved.

Silberschatz, Galvin and Gagne 2002A.36Operating System Concepts

File System

� The UNIX file system supports two main objects: files and
directories.

� Directories are just files with a special format, so the
representation of a file is the basic UNIX concept.

Silberschatz, Galvin and Gagne 2002A.37Operating System Concepts

Blocks and Fragments

� Most of the file system is taken up by data blocks.
� 4.2BSD uses two block sized for files which have no

indirect blocks:
✦ All the blocks of a file are of a large block size (such as 8K),

except the last.
✦ The last block is an appropriate multiple of a smaller

fragment size (i.e., 1024) to fill out the file.
✦ Thus, a file of size 18,000 bytes would have two 8K blocks

and one 2K fragment (which would not be filled completely).

Silberschatz, Galvin and Gagne 2002A.38Operating System Concepts

Blocks and Fragments (Cont.)

� The block and fragment sizes are set during file-system
creation according to the intended use of the file system:

✦ If many small files are expected, the fragment size should
be small.

✦ If repeated transfers of large files are expected, the basic
block size should be large.

� The maximum block-to-fragment ratio is 8 : 1; the
minimum block size is 4K (typical choices are 4096 : 512
and 8192 : 1024).

Silberschatz, Galvin and Gagne 2002A.39Operating System Concepts

Inodes

� A file is represented by an inode — a record that stores
information about a specific file on the disk.

� The inode also contains 15 pointer to the disk blocks
containing the file’s data contents.

✦ First 12 point to direct blocks.
✦ Next three point to indirect blocks

✔ First indirect block pointer is the address of a single
indirect block — an index block containing the
addresses of blocks that do contain data.

✔ Second is a double-indirect-block pointer, the address of
a block that contains the addresses of blocks that
contain pointer to the actual data blocks.

✔ A triple indirect pointer is not needed; files with as many
as 232 bytes will use only double indirection.

Silberschatz, Galvin and Gagne 2002A.40Operating System Concepts

Directories

� The inode type field distinguishes between plain files and
directories.

� Directory entries are of variable length; each entry
contains first the length of the entry, then the file name
and the inode number.

� The user refers to a file by a path name,whereas the file
system uses the inode as its definition of a file.

✦ The kernel has to map the supplied user path name to an
inode

✦ Directories are used for this mapping.

Silberschatz, Galvin and Gagne 2002A.41Operating System Concepts

Directories (Cont.)

� First determine the starting directory:
✦ If the first character is “/”, the starting directory is the root

directory.

✦ For any other starting character, the starting directory is the
current directory.

� The search process continues until the end of the path
name is reached and the desired inode is returned.

� Once the inode is found, a file structure is allocated to
point to the inode.

� 4.3BSD improved file system performance by adding a
directory name cache to hold recent directory-to-inode
translations.

Silberschatz, Galvin and Gagne 2002A.42Operating System Concepts

Mapping of a File Descriptor to an Inode

� System calls that refer to open files indicate the file is
passing a file descriptor as an argument.

� The file descriptor is used by the kernel to index a table of
open files for the current process.

� Each entry of the table contains a pointer to a file
structure.

� This file structure in turn points to the inode.
� Since the open file table has a fixed length which is only

setable at boot time, there is a fixed limit on the number
of concurrently open files in a system.

Silberschatz, Galvin and Gagne 2002A.43Operating System Concepts

File-System Control Blocks

Silberschatz, Galvin and Gagne 2002A.44Operating System Concepts

Disk Structures

� The one file system that a user ordinarily sees may
actually consist of several physical file systems, each on
a different device.

� Partitioning a physical device into multiple file systems
has several benefits.

✦ Different file systems can support different uses.
✦ Reliability is improved

✦ Can improve efficiency by varying file-system parameters.

✦ Prevents one program form using all available space for a
large file.

✦ Speeds up searches on backup tapes and restoring
partitions from tape.

Silberschatz, Galvin and Gagne 2002A.45Operating System Concepts

Disk Structures (Cont.)

� The root file system is always available on a drive.

� Other file systems may be mounted — i.e., integrated into
the directory hierarchy of the root file system.

� The following figure illustrates how a directory structure is
partitioned into file systems, which are mapped onto
logical devices, which are partitions of physical devices.

Silberschatz, Galvin and Gagne 2002A.46Operating System Concepts

Mapping File System to Physical Devices

Silberschatz, Galvin and Gagne 2002A.47Operating System Concepts

Implementations

� The user interface to the file system is simple and well
defined, allowing the implementation of the file system itself
to be changed without significant effect on the user.

� For Version 7, the size of inodes doubled, the maximum file
and file system sized increased, and the details of free-list
handling and superblock information changed.

� In 4.0BSD, the size of blocks used in the file system was
increased form 512 bytes to 1024 bytes — increased
internal fragmentation, but doubled throughput.

� 4.2BSD added the Berkeley Fast File System, which
increased speed, and included new features.

✦ New directory system calls
✦ truncate calls

✦ Fast File System found in most implementations of UNIX.

Silberschatz, Galvin and Gagne 2002A.48Operating System Concepts

Layout and Allocation Policy

� The kernel uses a <logical device number, inode
number> pair to identify a file.

✦ The logical device number defines the file system involved.

✦ The inodes in the file system are numbered in sequence.

� 4.3BSD introduced the cylinder group — allows
localization of the blocks in a file.

✦ Each cylinder group occupies one or more consecutive
cylinders of the disk, so that disk accesses within the
cylinder group require minimal disk head movement.

✦ Every cylinder group has a superblock, a cylinder block, an
array of inodes, and some data blocks.

Silberschatz, Galvin and Gagne 2002A.49Operating System Concepts

4.3BSD Cylinder Group

Silberschatz, Galvin and Gagne 2002A.50Operating System Concepts

I/O System

� The I/O system hides the peculiarities of I/O devices from
the bulk of the kernel.

� Consists of a buffer caching system, general device driver
code, and drivers for specific hardware devices.

� Only the device driver knows the peculiarities of a specific
device.

Silberschatz, Galvin and Gagne 2002A.51Operating System Concepts

4.3 BSD Kernel I/O Structure

Silberschatz, Galvin and Gagne 2002A.52Operating System Concepts

Block Buffer Cache

� Consist of buffer headers, each of which can point to a
piece of physical memory, as well as to a device number
and a block number on the device.

� The buffer headers for blocks not currently in use are kept
in several linked lists:

✦ Buffers recently used, linked in LRU order (LRU list).
✦ Buffers not recently used, or without valid contents (AGE

list).

✦ EMPTY buffers with no associated physical memory.

� When a block is wanted from a device, the cache is
searched.

� If the block is found it is used, and no I/O transfer is
necessary.

� If it is not found, a buffer is chosen from the AGE list, or
the LRU list if AGE is empty.

Silberschatz, Galvin and Gagne 2002A.53Operating System Concepts

Block Buffer Cache (Cont.)

� Buffer cache size effects system performance; if it is large
enough, the percentage of cache hits can be high and
the number of actual I/O transfers low.

� Data written to a disk file are buffered in the cache, and
the disk driver sorts its output queue according to disk
address — these actions allow the disk driver to minimize
disk head seeks and to write data at times optimized for
disk rotation.

Silberschatz, Galvin and Gagne 2002A.54Operating System Concepts

Raw Device Interfaces

� Almost every block device has a character interface, or
raw device interface — unlike the block interface, it
bypasses the block buffer cache.

� Each disk driver maintains a queue of pending transfers.
� Each record in the queue specifies:

✦ whether it is a read or a write

✦ a main memory address for the transfer
✦ a device address for the transfer

✦ a transfer size

� It is simple to map the information from a block buffer to
what is required for this queue.

Silberschatz, Galvin and Gagne 2002A.55Operating System Concepts

C-Lists

� Terminal drivers use a character buffering system which
involves keeping small blocks of characters in linked lists.

� A write system call to a terminal enqueues characters on
a list for the device. An initial transfer is started, and
interrupts cause dequeueing of characters and further
transfers.

� Input is similarly interrupt driven.
� It is also possible to have the device driver bypass the

canonical queue and return characters directly form the
raw queue — raw mode (used by full-screen editors and
other programs that need to react to every keystroke).

Silberschatz, Galvin and Gagne 2002A.56Operating System Concepts

Interprocess Communication

� The pipe is the IPC mechanism most characteristic of
UNIX.

✦ Permits a reliable unidirectional byte stream between two
processes.

✦ A benefit of pipes small size is that pipe data are seldom
written to disk; they usually are kept in memory by the
normal block buffer cache.

� In 4.3BSD, pipes are implemented as a special case of
the socket mechanism which provides a general interface
not only to facilities such as pipes, which are local to one
machine, but also to networking facilities.

� The socket mechanism can be used by unrelated
processes.

Silberschatz, Galvin and Gagne 2002A.57Operating System Concepts

Sockets

� A socket is an endpont of communication.
� An in-use socket it usually bound with an address; the

nature of the address depends on the communication
domain of the socket.

� A characteristic property of a domain is that processes
communication in the same domain use the same
address format.

� A single socket can communicate in only one domain —
the three domains currently implemented in 4.3BSD are:

✦ the UNIX domain (AF_UNIX)
✦ the Internet domain (AF_INET)

✦ the XEROX Network Service (NS) domain (AF_NS)

Silberschatz, Galvin and Gagne 2002A.58Operating System Concepts

Socket Types

� Stream sockets provide reliable, duplex, sequenced data
streams. Supported in Internet domain by the TCP
protocol. In UNIX domain, pipes are implemented as a pair
of communicating stream sockets.

� Sequenced packet sockets provide similar data streams,
except that record boundaries are provided. Used in
XEROX AF_NS protocol.

� Datagram sockets transfer messages of variable size in
either direction. Supported in Internet domain by UDP
protocol

� Reliably delivered message sockets transfer messages
that are guaranteed to arrive. Currently unsupported.

� Raw sockets allow direct access by processes to the
protocols that support the other socket types; e.g., in the
Internet domain, it is possible to reach TCP, IP beneath
that, or a deeper Ethernet protocol. Useful for developing
new protocols.

Silberschatz, Galvin and Gagne 2002A.59Operating System Concepts

Socket System Calls

� The socket call creates a socket; takes as arguments
specifications of the communication domain, socket
type, and protocol to be used and returns a small integer
called a socket descriptor.

� A name is bound to a socket by the bind system call.
� The connect system call is used to initiate a connection.
� A server process uses socket to create a socket and

bind to bind the well-known address of its service to that
socket.

✦ Uses listen to tell the kernel that it is ready to accept
connections from clients.

✦ Uses accept to accept individual connections.

✦ Uses fork to produce a new process after the accept to
service the client while the original server process
continues to listen for more connections.

Silberschatz, Galvin and Gagne 2002A.60Operating System Concepts

Socket System Calls (Cont.)

� The simplest way to terminate a connection and to
destroy the associated socket is to use the close system
call on its socket descriptor.

� The select system call can be used to multiplex data
transfers on several file descriptors and /or socket
descriptors

Silberschatz, Galvin and Gagne 2002A.61Operating System Concepts

Network Support

� Networking support is one of the most important features
in 4.3BSD.

� The socket concept provides the programming
mechanism to access other processes, even across a
network.

� Sockets provide an interface to several sets of protocols.
� Almost all current UNIX systems support UUCP.
� 4.3BSD supports the DARPA Internet protocols UDP,

TCP, IP, and ICMP on a wide range of Ethernet, token-
ring, and ARPANET interfaces.

� The 4.3BSD networking implementation, and to a certain
extent the socket facility, is more oriented toward the
ARPANET Reference Model (ARM).

Silberschatz, Galvin and Gagne 2002A.62Operating System Concepts

Network Reference models and Layering

