

UMBC Guest Lecture

The Composite Component-
Based Operating System

Gabriel Parmer
Computer Science Dept

The George Washington University

aka. Gabe

Discussion encouraged...

● Please stop me at any moment
● Let me know if you haven't yet learned

something or don't know a term
● Questions, questions, questions!

Today

● What is a component-based operating system?
● A design study of one of the most important

mechanisms

System Structure
● System Structure: How different software parts

1) Are separated from each other (Why?)

2) Communicate

● How does a system separate software using
● dual mode
● virtual address spaces

● Implications on
● Security/Reliability

● What are some common system structures?

Monolithic System Structure

Word BrowserExcel

Operating System
(File System, Networking,

Memory Mgmt, Scheduling, ...)

Hardware (CPU, Memory, Peripherals
– hard drive, NIC, GPU)

Kernel
- most trusted
- must work

“User-Level”
System
Call

open(...)

● Includes Unix/Windows/OSX

Dual mode protection? Virtual address spaces?

Monolithic System Structure

Word BrowserExcel

Operating System
(File System, Networking,

Memory Mgmt, Scheduling, ...)

Hardware (CPU, Memory, Peripherals
– hard drive, NIC, GPU)

Kernel
- most trusted
- must work

“User-Level”
System
Call

open(...)

● Includes Unix/Windows/OSX

Windows 95
Windows 98

Windows XP
Windows Vista

0

10

20

30

40

50

60

Millions of Lines
of Code

When's the last time you tried
to get 50 MLOC to work???

Microkernel System Structure

● Moves functionality from the kernel to “user” space
● Communication takes place between user servers

using inter-process communication (IPC)
● Benefits:

● Easier to add functionality
● More reliable (why?)
● More secure (why?)

● Down-sides???

App
File

System Memory
Management

Networking

User level

Kernel level

open(...)

IPC <10 KLOC

Component-Based OS
● Component:

– unit of functionality that exports an interface

– uses other component's interfaces

– User-level

– separate virtual addr space

● Interface: Set of typed functions

● Even low-level functionality implemented in
components

– Scheduling, memory management, device drivers

● Kernel is minimal: not even scheduling!!!

● IPC for component communication

vs. Microkernel?

● Microkernel:
– Put subsystems at user-level

– Networking, File system, etc...

– Focus: Separate a normal system into servers

● Component-Based system
– Break system into small chunks of functionality

– Glue together specific components specific to the
goals of the system: customizability

– Focus: Break system into small functionalities

IPC Implementation

● High frequency of “inter-process
communication”

– “inter-component communication”

– Must be fast!!!

● What are the minimal hardware operations
required to get a message from C

0
 to C

1
?

– user/kernel and virtual addr space switches?

● How many thread switches?
– Assuming separate threads per component

IPC Implementation II

● Asynchronous communication: UNIX Pipes

● C
0
: write(p1, buf0, sz); r = read(p2, buf0, sz)

C
1
: read(p1, buf1, sz); r1 = write(p2, buf1, sz)

● Hardware operations?
● Thread switches?

IPC Implementation III

● Synchronous IPC – like function calls!
C

0
: int foo(){return bar();} C

1
: int bar(){return 1;}

● Hardware operations?
● Thread switches? Assumptions?

IPC Implementation IV

● Synchronous IPC between threads
C

0
: call(C

1
,buf,sz)

C
1
: recv(C

0
,buf,sz); reply_recv(C

0
,buf,sz)

● Hardware operations?
● Thread switches? Assumptions?

IPC Implementation V

● What is a thread?
● Synchronous IPC – thread migration

C
0
: foo() {return bar();}

C
1
: bar() {return 1;}

● No thread switches – same “schedulable entity”
● Hardware operations?

Composite CBOS

● See
http://www.seas.gwu.edu/~gparmer/projects/composite/

● Github repository for source code

– We're accepting outside contributions!

– TODO list in doc/ – smallish tasks

http://www.seas.gwu.edu/~gparmer/projects/composite/

Virtual Machines I

● Do you know what these are?
● What is the structure of VMs?

Virtual Machines II

● A virtual machine host (the kernel) provides an
interface identical to the underlying bare
hardware

● Other guest kernels execute in user-mode
● The API for virtual machines is a copy of the

machine!

Virtual Machines III

 (a) non-virtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

System
call

hypercallidentical

Virtual Machine: Benefits

● Fundamentally, multiple operating systems
share the same hardware

● Protected from each other
● Some sharing of files
● Communicate with each other via networking
● Useful for development, testing
● Consolidation of many low-resource use
systems onto fewer busier systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

