UMBC Guest Lecture

The Composite Component-
Based Operating System

Gabriel Parmer
Computer Science Dept
The George Washington University

aka. Gabe



Discussion encouraged...

* Please stop me at any moment

* Let me know Iif you haven't yet learned
something or don't know a term

* Questions, questions, questions!



Today

 What Is a component-based operating system?

* A design study of one of the most important
mechanisms



System Structure

System Structure: How different software parts

1) Are separated from each other (Why?)
2) Communicate

How does a system separate software using

* dual mode
e virtual address spaces

Implications on
o Security/Reliability
What are some common system structures?



Monolithic System Structure

e Includes Unix/Windows/OSX

Word

Excel

Browser

|
System]|

“User-Level”

Call

Hardware (CPU, Memory, Peripherals
— hard drive, NIC, GPU)

Kernel
- most trusted
- must work

Dual mode protection? Virtual address spaces?



Monolithic System Structure

e Includes Unix/Windows/OSX

60

50

=
=

40

30 wvel’
SySte m u L\)/]Icllil:oondseof Lines -
Call 20
) I I
0

Windows 98 Windows Vista 'u Sted

Windows 95 Windows XP

vork

When's the last time you tried
to get 50 MLOC to work???

I
Q
=
o

— hard drive, NIC, GPU)




Microkernel System Structure

A Memory
B Management
open(...
User level pent...)

Kernel level

IPC <10 KLOC

* Moves functionality from the kernel to “user” space

 Communication takes place between user servers
using inter-process communication (IPC)

* Benefits:
* Easier to add functionality

 More reliable (why?)
* More secure (why?)

e Down-sides???



Component-Based OS

Component.

— unit of functionality that exports an interface
— uses other component's interfaces

- User-level

- separate virtual addr space

Interface: Set of typed functions

Even low-level functionality implemented Iin
components

- Scheduling, memory management, device drivers
Kernel is minimal: not even scheduling!!!

IPC for component communication



@ection Ma@
File Desc. API

HTTP Parser
Static

Content

Timer Driver Network Driver




vs. Microkernel?

e Microkernel:

- Put subsystems at user-level
- Networking, File system, etc...
- Focus: Separate a normal system Into servers

e Component-Based system

- Break system into small chunks of functionality

- Glue together specific components specific to the
goals of the system: customizability

- Focus: Break system into small functionalities



IPC Implementation

* High frequency of “inter-process
communication”

- “Inter-component communication”
- Must be fast!!!

 What are the minimal hardware operations
required to get a message from C to C ?
- user/kernel and virtual addr space switches?
 How many thread switches?
- ASsuming separate threads per component



IPC Implementation Il

Asynchronous communication: UNIX Pipes
C_: write(pl, buf0, sz); r = read(p2, buf0, sz)
C :read(pl, bufl, sz); r1 = write(p2, bufl, sz)

Hardware operations?
Thread switches?



IPC Implementation Il

* Synchronous IPC - like function calls!
C_: intfoo(){return bar();} C_:intbar(){return 1;}

 Hardware operations?
* Thread switches? Assumptions?



IPC Implementation IV

» Synchronous IPC between threads
C_: call(C, ,buf,sz)

C,: recv(C ,buf,sz); reply_recv(C ,buf,sz)

 Hardware operations?
* Thread switches? Assumptions?



IPC Implementation V

What Is a thread?

Synchronous IPC — thread migration
C_: foo() {return bar();}

C,: bar() {return 1;}

No thread switches — same “schedulable entity”
Hardware operations?



Composite CBOS

¢ See
http://www.seas.gwu.edu/~gparmer/projects/composite/

» Github repository for source code

- We're accepting outside contributions!
— TODO list in doc/ — smallish tasks


http://www.seas.gwu.edu/~gparmer/projects/composite/

Virtual Machines |

* Do you know what these are?
 What is the structure of VMs?



Virtual Machines Il

* Avirtual machine host (the kernel) provides an
Interface identical to the underlying bare

hardware
e Other guest kernels execute in user-mode

 The API for virtual machines is a copy of the
machine!



Virtual Machines ll|

processes
processes
processes processes
System
call
_ e
programming
- .~ interface kernel kernel kernel
kernel VM1 VM2 VM3
<— identical virtual-machine v
implementation
hardware r——
(a) (b)

(a) non-virtual machine

hypercall

(b) virtual machine



Virtual Machine: Benefits

Fundamentally, multiple operating systems
share the same hardware

Protected from each other

Some sharing of files

Communicate with each other via networking
Useful for development, testing

Consolidation of many low-resource use
systems onto fewer busier systems



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

