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There’s a kernel security researcher named Dan Rosenberg whose done a lot 
of linux kernel vulnerability research 

That’s unavoidable, but the linux kernel developers don’t do very much to 
make the situation any better. 

-- Basically, the kernel developers treat everything like a bug that is annoying 
and just needs to be fixed. 
One good example of this attitude the fact that there was not even discussion 
of a centralized security response approach until 2005.   

Search for “linux kernel security contact policy” and you’ll get some mailing list 
traffic about it and nothing else. 

--Another illustrative example is that when a bug does get fixed, the changelog 
does not list a CVE number. 

So the key takeaways of this talk are not just learning about how vulnerabilities 
come to be, but also why so many crop up even though there are so many 
eyes looking at the source code. 

- Code running in supervisor (ring0) mode in the process context (i.e. through 
a system call) has an associated process and, while executing at kernel level, 
we can dereference (or jump to) userland addresses.  

- The way new code is introduced to the kernel does require review by several 
people, but it does not explicitly require evidence that it is secure.  
- When someone comes along with a “new, better way” to do something, there 
is no process for comparison with the old way to make sure the same sorts of 
checks are necessary or in place. 
- The same is true when new drivers are introduced. There is no formal 
validation or comparison to make sure that this driver makes the same kinds of 
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-The do_brk() is an internal kernel function which is called indirectly to manage 
process' s memory heap (brk) growing or shrinking it accordingly.  
-The user may manipulate his heap with the brk(2) system call which calls 
do_brk() internally.  
-The do_brk() code is a simplified version of the mmap(2) system call and only 
handles anonymous mappings for uninitialized data. 

-The actual exploit of this bug was complex for its time, and required the use 
of several techniques and work-arounds. 
-Obviously, people had been using this one already for quite some time 
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 - Introduced to dev kernel on 10-Jun-1999 (version 2.3.6) 
    - Released in version 2.4.0 on 04-Jan-2001. 
    - Andrew Morton submits patch on 24-Sept-2003. 
    - Released to 2.6.0-test6 on 27-Sept-2003 with message "do_brk() bounds 
checking", another listed "Add TASK_SIZE check to do_brk()" 
        - 1 of over 2000 patches that month 
    - Released to 2.4.23-pre7 on 09-Oct-2003 
    - 02-Nov-2003 savannah.gnu.org rooted, supposedly with this vulnerability. 
    - 19-Nov-2003 multiple debian servers start to get rooted. 
    - 20-Nov-2003 Debian admins notice some kernel oopses, find breakin and 
tear-down servers 
    - 22-Nov-2003 Debian servers begin coming back (done on 25-Nov-2011) 
    - 26-Nov-2003 CVE/CAN-2003-0961 Assigned. 
    - 28-Nov-2003 2.4.23 Released. 
    - 01-Dec-2003 POC Exploit code starts to appear. 
    - 01-Dec-2003 FSF discovers hack. 
    - 02-Dec-2003 Gentoo server rooted in the same manner. 
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- The actual bug is an extremely simple logical error.. A lack of a bounds 
check.  

- There originally was no special case code for brk(), i.e., do_brk, which tries to 
speed things up because the end of the heap segment is special.  
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- As the TASK_SIZE check was missing, we could have tried to allocate  
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- Random commenter notes: “I think the kernel developers forgot that the ELF-
headers can be modified to start the program such that the heap segment 
might be at the end of the memory space, so they think that it is not possible to 
have brk() called in such a way that can extend through the end of the address 
space” 

-I think the commenter is right, because normally, misusing this call would 
overlap with another segment causing an obvious error, and then virtual 
memory bound checking will stop anything wrong from happening. The person 
who wrote do_brk was probably thinking that this bound checking would be 
sufficient when he wrote it.  
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mov eax, 163    ; mremap 
mov ebx, esp 
and ebx, ~(0x1000 - 1)  ; align to page size 
mov ecx, 0x1000  ; we suppose stack is one page only 
mov edx, 0x9000  ; be sure it can't get mapped after us 
mov esi,1       ; MREMAP_MAYMOVE 
int 0x80 

-- You could also do this in the elf header, but most exploits either unmap or 
remap the stack.  
-- The first big problem to solve is finding where we want to modify memory.  
-- There is another big problem here, and that is that while the memory may be 
mapped, the supervisor bit is still going to be set in the MMU. 

-- brk must be called multiple times, because we need to bypass a kernel limit 
on the virtual memory that may be mapped at once using do_brk() function. 

After these three steps our heap may look like: 
080a5000-fffff000 rwxp 00000000 00:00 0 
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- This really depends on what you want to do.  
- We could turn the supervisor bit *off* on every page in kernel space, then 
scan memory for our magic LDT entry value---this could work but it would be 
very messy to clean up. 
- Yet another thing we could do is scan memory for our task_struct entry, but 
we won’t know for sure what it looks like. 
- Or we could overwrite a syscall table entry, or used the ptrace stuff, but some 
vendors/kernel compilers turned that feature off.  
-  the list goes on.  
- The verr instruction verifies whether the code or data segment specified with 
the source operand is readable 
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- Prepare is simply a helper function which sets up a signal handler 

- In the case of the SIGSEGV signal the kernel's do_page_fault() routine leaks 
its error_code value (un)intentionally to the signal handler. There are two 
error_code values that we are interested in: 
-  * a page fault occurred because the page was not mapped into memory 
-  * a page fault occurred because the page protection doesn't allow to access 
it 

- All this code is doing is generating a bitmap of which pages are and are not 
mapped to memory. 
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- All this function does is return if the page is in memory or not using results of 
the signal. 

- Setjmp always returns 0 the first time through. 
- If the asm instruction causes a signal, execution restarts at the setjmp, and 
val is now non-zero 
- If it does not, that means the page is in memory. 
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- This is the signal handler being used by test addr.  
- If the page is in memory, the signal doesn’t get called.  
- If its not in memory or its inaccessible, we return an error code to the user.  
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-The process's local descriptor table (LDT) holds an array of segment 
descriptors each of them describing segment limits and access privileges. 
- Modify_ldt is a syscall that lets us add and read LDT entries, which can be 
used to define custom code and data segments outside of data/text and kernel 
segments. 
- This bit of code will cause the kernel to allocate an additional page to handle 
the new ldt entries, because the array is allocated through the vmalloc() 
allocator for each process that writes LDT entries using the modify_ldt(2) 
system call.  
- We are going to add one with a magic HEX value that is in kernel space, and 
then we are going to scan using signals and “verr” syscall for a page in 
memory that has not been mapped. 
- Once we find the LDT entry, we can change an entry to call an arbitrary 
routine at ring0.  
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- Note: This code has been lobotomized to fit. 
- It’s looping through for mapped pages like before (with the signal handler 
used in the same way).  
- Except, this time it’s comparing against the bitmap we made before. 
- When it fails to find a hit, it records the address, and it eventually returns at 
the end of the while loop. 
- There’s some error checking in this function to make sure we don’t destroy 
the kernel.  
- For example, LDT_PAGES is a heuristic calculation to figure out the page 
number at which the LDT_PAGES should start (of which there should only be 
1 unique one). 
- If all goes well, the last mapped kpage should be the one we hit. 
-    
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- At this point, we can use the aforementioned sys_brk calls to expand 
ourselves out to this page table, then we can turn off the supervisor bit to 
change it. 

- “address” here is a page table pointing at kernel memory we want to 
overwrite. Specifically we will overwrite the LDT  
- Defense in depth dictates that mprotect should never change kernel-level 
memory address protections, but it did work when the exploit was released. 
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- The lcall instruction is calling a “call gate descriptor” that enables privilege level 
transition from the user to the kernel privilege level. 
- ENTRY_GATE is set to “kcode” which is a function we define in assembler that will 
be run in kernel mode. 
- CS is the code segment selector and it controls what ring the code will run at – we 
are setting this to kernel level priveleges. 
- DS is the descriptor privilege level which controls what ring can call the call gate – 
we are setting this so that user processes can call it. 

- We decided to setup a call gate in the LDT with descriptor privilege level of 3 and the 
code segment equal to KERNEL_CS (which is the kernel code descriptor for CPL0)  
- Note that it is pointing back into the process's address space below TASK_SIZE – 
this allows aa user mode task to directly call its own code at CPL0 
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-Note, this one has also been lobotomized for space. 
-This is an assembler routine which will call a C function 
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- Uid is the userid for the process. It should show up in task_struct 4 times in a 
row.  
- When we find it, set our uid and our gid (the next 4) to 0 – we are now root.  
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-Continuing the previous function we scan again looking for vm_area_struct 
structures over the task_size limit. 
-this time we are looking for values which match the heuristic pattern (found 
through trial and error), which corresponds to our resultant super-large heap 
size, then make it less than TASK_SIZE. 
- Note: address is the last page of memory we abused the sys_brk command 
to get to, that’s why it appears here again 
- While not shown, there’s an expansion loop that calls sbrk *after* we’ve 
figured out what we want to mess up in memory.   
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- Pretty much every one of these techniques generalizes and are still useful 
avenues for modern kernel exploitation. 
- The main difference, however, are that there are usually a few more 
roadblocks to get around. 

- One other thing to note is that this vulnerability, while difficult to exploit was 
very simple to understand, that’s not generally the case anymore. 
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This exploit is non-obvious and it is a good example of the kinds of exploits 
you would’ve seen in the last 5 years. 
[1] user_info.size is a signed integer, so we can pass a negative number to 
bypass the check. 
[2] The kmalloc will convert the unsigned number to signed, so we can force 
kmalloc to return NULL here.  
[3]  As we can see, this thing gets written into the now null info->data variable, 
which we can use. 
[4] At this location we see that we can use the store_info function to put our 
UID anywhere we want to in memory. 

What we have to do to exploit such a code is simply mmap the zero page 
(0x00000000 - NULL) at userspace, make the kmalloc fail by passing a 
negative value and then prepare a 'fake' data struct in the previously 
mmapped area, providing working pointers for 'perm' and thus being able to 
write our 'uid' anywhere in memory.  
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[1] Memory map 0x0 (NULL) 
[2] Call the alloc function with a negative value for the kmalloc call (this gets around the if 
statement and causes malloc to fail and return 0.  
At this point, the user_info struct’s data member is pointing to null.  
[3] Use the proc’s mmap’d data to point the ->perm member of the data struct at the place in 
memory where we’d like to put our UID (which should be in our task_struct).  
[4] Call the store_info function, and let it change our UID for us.  

In principle, this works great, but in practice it’s hard to find out where the task_struct will be 
located. 

- A better alternative to this is to use the sidt function to get the location of the interrupt 
descriptor table.  
- Then we can pick one of the interrupts and overwrite the MSB. (This technique is called 
creating a trap gate).  
- This moves the interrupt handler from kernel code into userspace. 
- We can mmap and setup a nopslide ending in a trampoline in the location we believe the new 
interrupt handler will be, then invoke it 
- After trampolining, we can clean up our mess and execve our root shell.  
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- The only difference in these techniques is how they cause  
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CVE-2007-4573 – Not only was this one long-lived, it was also 
“obvious” (much more so than do_brk). 
CVE-2009-2692  sock_sendpage – this one has been around since 2001, 
and it was also more obvious than do_brk.  

The moxa bug is the most notable. Not only had it been around since the 90s, 
it had also been unpatched until 2007, 2 full years after it was reported! 
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CVE-2010-3904 - Rds page copy vulnerability. 

CVE-2009-0065 – sctp buffer overflow vulnerability 

Also note that the bug referred to in CVE-2007-4573 was actually floating 
around the hacker community since 2003. It’s just that no one reported it until 
4 years later. 

28 



29 



Kptr_restrict hides kernel pointers 
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grsecurity: 
Frustrate and log attempted exploits 
Hide sensitive information from /proc and friends 
Enhance chroots 
Lock down weird syscalls and processor features 
Do other neat things 
PaX: 
Ensures that writable memory is never executable 
Randomizes addresses in kernel and userspace 
Erases memory when it’s freed 
Checks bounds on copies between kernel and userspace 
Prevents unintentional use of userspace pointers 

StackJacking: 
Find a kernel stack information leak 
Use this to discover the address of your kernel stack 
Mess with active stack frames to get an arbitrary read 
Use that to locate credentials struct and escalate privs 
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It is a combination of disorganization and inattentiveness   
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