
'

&

$

%

Module 9: Virtual Memory

• Background

• Demand Paging

• Performance of Demand Paging

• Page Replacement

• Page-Replacement Algorithms

• Allocation of Frames

• Thrashing

• Other Considerations

• Demand Segmentation

Operating System Concepts 9.1 Silberschatz and Galvin c©1998

'

&

$

%

Background

• Virtual memory – separation of user logical memory from
physical memory.

– Only part of the program needs to be in memory for
execution.

– Logical address space can therefore be much larger than
physical address space.

– Need to allow pages to be swapped in and out.

• Virtual memory can be implemented via:

– Demand paging

– Demand segmentation

Operating System Concepts 9.2 Silberschatz and Galvin c©1998



'

&

$

%

Demand Paging

• Bring a page into memory only when it is needed.

– Less I/O needed

– Less memory needed

– Faster response

– More users

• Page is needed ⇒ reference to it

– invalid reference ⇒ abort

– not-in-memory ⇒ bring to memory

Operating System Concepts 9.3 Silberschatz and Galvin c©1998

'

&

$

%

Valid–Invalid Bit

• With each page table entry a valid–invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

• Initially valid–invalid bit is set to 0 on all entries.

• Example of a page table snapshot.

..

.

1

0
0

0

1
1
1

page table

frame # valid-invalid bit

• During address translation, if valid–invalid bit in page table
entry is 0 ⇒ page fault.

Operating System Concepts 9.4 Silberschatz and Galvin c©1998



'

&

$

%

Page Fault

• If there is ever a reference to a page, first reference will trap to
OS ⇒ page fault.

• OS looks at another table to decide:
– Invalid reference ⇒ abort.
– Just not in memory.

• Get empty frame.

• Swap page into frame.

• Reset tables, validation bit = 1.

• Restart instruction: Least Recently Used

– block move

– auto increment/decrement location

Operating System Concepts 9.5 Silberschatz and Galvin c©1998

'

&

$

%

What happens if there is no free frame?

• Page replacement – find some page in memory, but not really
in use, swap it out.

– algorithm

– performance – want an algorithm which will result in
minimum number of page faults.

• Same page may be brought into memory several times.

Operating System Concepts 9.6 Silberschatz and Galvin c©1998



'

&

$

%

Performance of Demand Paging

• Page Fault Rate 0 ≤ p ≤ 1.0

– if p = 0, no page faults

– if p = 1, every reference is a fault

• Effective Access Time (EAT)

EAT = (1 − p) × memory access
+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Operating System Concepts 9.7 Silberschatz and Galvin c©1998

'

&

$

%

Demand Paging Example

• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been
modified and therefore needs to be swapped out.

• Swap Page Time = 10 msec = 10,000 msec

EAT = (1 − p) × 1 + p (15000)
= 1 + 15000P (in msec)

Operating System Concepts 9.8 Silberschatz and Galvin c©1998



'

&

$

%

Page Replacement

• Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement.

• Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk.

• Page replacement completes separation between logical
memory and physical memory – large virtual memory can be
provided on a smaller physical memory.

Operating System Concepts 9.9 Silberschatz and Galvin c©1998

'

&

$

%

Page-Replacement Algorithms

• Want lowest page-fault rate.

• Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string.

• In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Operating System Concepts 9.10 Silberschatz and Galvin c©1998



'

&

$

%

First-In-First-Out (FIFO) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

1 1 4 5

2 2 1 3 9 page faults

3 3 2 4

• 4 frames
1 1 5 4

2 2 1 5

3 3 2 10 page faults

4 4 3

• FIFO Replacement – Belady’s Anomaly

– more frames 6⇒ less page faults

Operating System Concepts 9.11 Silberschatz and Galvin c©1998

'

&

$

%

Optimal Algorithm

• Replace page that will not be used for longest period of time.

• 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 4

2 6 page faults

3

4 5

• How do you know this?

• Used for measuring how well your algorithm performs.

Operating System Concepts 9.12 Silberschatz and Galvin c©1998



'

&

$

%

Least Recently Used (LRU) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 5

2

3 5 4

4 3

• Counter implementation

– Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter.

– When a page needs to be changed, look at the counters to
determine which are to change

Operating System Concepts 9.13 Silberschatz and Galvin c©1998

'

&

$

%

LRU Algorithm (Cont.)

• Stack implementation – keep a stack of page numbers in a
double link form:

– Page referenced:
∗ move it to the top
∗ requires 6 pointers to be changed

– No search for replacement

Operating System Concepts 9.14 Silberschatz and Galvin c©1998



'

&

$

%

LRU Approximation Algorithms

• Reference bit

– With each page associate a bit, initially = 0.

– When page is referenced bit set to 1.

– Replace the one which is 0 (if one exists). We do not know
the order, however.

• Second chance

– Need reference bit.

– Clock replacement.

– If page to be replaced (in clock order) has reference bit = 1,
then:
∗ set reference bit 0.
∗ leave page in memory.
∗ replace next page (in clock order), subject to same rules.

Operating System Concepts 9.15 Silberschatz and Galvin c©1998

'

&

$

%

Counting Algorithms

• Keep a counter of the number of references that have been
made to each page.

• LFU Algorithm: replaces page with smallest count.

• MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used.

Operating System Concepts 9.16 Silberschatz and Galvin c©1998



'

&

$

%

Allocation of Frames

• Each process needs minimum number of pages.

• Example: IBM 370 – 6 pages to handle SS MOVE instruction:

– Instruction is 6 bytes, might span 2 pages.

– 2 pages to handle from.

– 2 pages to handle to.

• Two major allocation schemes:

– fixed allocation

– priority allocation

Operating System Concepts 9.17 Silberschatz and Galvin c©1998

'

&

$

%

Fixed Allocation

• Equal allocation – e.g., If 100 frames and 5 processes, give
each 20 pages.

• Proportional allocation – Allocate according to the size of
process.

– si = size of process pi
– S = Σ si
– m = total number of frames
– ai = allocation for pi = si

S × m

m = 64
s1 = 10
s2 = 127
a1 = 10

137 × 64 ≈ 5
a2 = 127

137 × 64 ≈ 59

Operating System Concepts 9.18 Silberschatz and Galvin c©1998



'

&

$

%

Priority Allocation

• Use a proportional allocation scheme using priorities rather
than size.

• If process Pi generates a page fault,

– select for replacement one of its frames.

– select for replacement a frame from a process with lower
priority number.

Operating System Concepts 9.19 Silberschatz and Galvin c©1998

'

&

$

%

Global vs. Local Allocation

• Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame from
another.

• Local replacement – each process selects from only its own
set of allocated frames.

Operating System Concepts 9.20 Silberschatz and Galvin c©1998



'

&

$

%

Thrashing

• If a process does not have “enough” pages, the page-fault rate
is very high. This leads to:

– low CPU utilization.

– operating system thinks that it needs to increase the degree
of multiprogramming.

– another process added to the system.

• Thrashing ≡ a process is busy swapping pages in and out.

Operating System Concepts 9.21 Silberschatz and Galvin c©1998

'

&

$

%

Thrashing Diagram

degree of multiprogramming

C
P

U
 u

til
iz

at
io

n thrashing

• Why does paging work?
Locality model

– Process migrates from one locality to another.
– Localities may overlap.

• Why does thrashing occur?
Σ size of locality > total memory size

Operating System Concepts 9.22 Silberschatz and Galvin c©1998



'

&

$

%

Working-Set Model

• ∆ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 instruction

• WSSi (working set of process Pi ) =
total number of pages referenced in the most recent ∆ (varies
in time)

– If ∆ too small will not encompass entire locality.

– If ∆ too large will encompass several localities.

– If ∆ = ∞ ⇒ will encompass entire program.

• D = Σ WSSi ≡ total demand frames

• If D > m ⇒ thrashing.

• Policy if D > m, then suspend one of the processes.

Operating System Concepts 9.23 Silberschatz and Galvin c©1998

'

&

$

%

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example: ∆ = 10,000

– Timer interrupts after every 5000 time units.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts copy and sets the values of all
reference bits to 0.

– If one of the bits in memory = 1 ⇒ page in working set.

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units

Operating System Concepts 9.24 Silberschatz and Galvin c©1998



'

&

$

%

Page-Fault Frequency Scheme

number of frames

pa
ge

-f
au

lt 
ra

te increase number
of frames

decrease number
of frames

upper bound

lower bound

• Establish “acceptable” page-fault rate.

– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.

Operating System Concepts 9.25 Silberschatz and Galvin c©1998

'

&

$

%

Other Considerations

• Prepaging

• Page size selection

– fragmentation

– table size

– I/O overhead

– locality

Operating System Concepts 9.26 Silberschatz and Galvin c©1998



'

&

$

%

Other Considerations (Cont.)

• Program structure

– Array A[1024,1024] of integer

– Each row is stored in one page

– One frame

– Program 1 for j := 1 to 1024 do
for i := 1 to 1024 do

A[i, j ] := 0;

1024 × 1024 page faults

– Program 2 for i := 1 to 1024 do
for j := 1 to 1024 do

A[i, j ] := 0;

1024 page faults

• I/O interlock and addressing

Operating System Concepts 9.27 Silberschatz and Galvin c©1998

'

&

$

%

Demand Segmentation

• Used when insufficient hardware to implement demand paging.

• OS/2 allocates memory in segments, which it keeps track of
through segment descriptors.

• Segment descriptor contains a valid bit to indicate whether the
segment is currently in memory.

– If segment is in main memory, access continues,

– If not in memory, segment fault.

Operating System Concepts 9.28 Silberschatz and Galvin c©1998


	 Background
	Demand Paging
	Valid--Invalid Bit
	Page Fault
	 What happens if there is no free frame?
	Performance of Demand Paging
	Demand Paging Example
	Page Replacement
	Page-Replacement Algorithms
	First-In-First-Out (FIFO) Algorithm
	Optimal Algorithm
	Least Recently Used (LRU) Algorithm
	LRU Algorithm (Cont.)
	LRU Approximation Algorithms
	Counting Algorithms
	Allocation of Frames
	Fixed Allocation
	Priority Allocation
	Global vs. Local Allocation
	Thrashing
	Thrashing Diagram
	Working-Set Model
	Keeping Track of the Working Set
	Page-Fault Frequency Scheme
	Other Considerations
	Other Considerations (Cont.)
	Demand Segmentation

