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Module 9: Virtual Memory

• Background

• Demand Paging

• Performance of Demand Paging

• Page Replacement

• Page-Replacement Algorithms

• Allocation of Frames

• Thrashing

• Other Considerations

• Demand Segmentation
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Background

• Virtual memory – separation of user logical memory from
physical memory.

– Only part of the program needs to be in memory for
execution.

– Logical address space can therefore be much larger than
physical address space.

– Need to allow pages to be swapped in and out.

• Virtual memory can be implemented via:

– Demand paging

– Demand segmentation
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Demand Paging

• Bring a page into memory only when it is needed.

– Less I/O needed

– Less memory needed

– Faster response

– More users

• Page is needed ⇒ reference to it

– invalid reference ⇒ abort

– not-in-memory ⇒ bring to memory
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Valid–Invalid Bit

• With each page table entry a valid–invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

• Initially valid–invalid bit is set to 0 on all entries.

• Example of a page table snapshot.
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• During address translation, if valid–invalid bit in page table
entry is 0 ⇒ page fault.
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Page Fault

• If there is ever a reference to a page, first reference will trap to
OS ⇒ page fault.

• OS looks at another table to decide:
– Invalid reference ⇒ abort.
– Just not in memory.

• Get empty frame.

• Swap page into frame.

• Reset tables, validation bit = 1.

• Restart instruction: Least Recently Used

– block move

– auto increment/decrement location
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What happens if there is no free frame?

• Page replacement – find some page in memory, but not really
in use, swap it out.

– algorithm

– performance – want an algorithm which will result in
minimum number of page faults.

• Same page may be brought into memory several times.
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Performance of Demand Paging

• Page Fault Rate 0 ≤ p ≤ 1.0

– if p = 0, no page faults

– if p = 1, every reference is a fault

• Effective Access Time (EAT)

EAT = (1 − p) × memory access
+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)
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Demand Paging Example

• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been
modified and therefore needs to be swapped out.

• Swap Page Time = 10 msec = 10,000 msec

EAT = (1 − p) × 1 + p (15000)
= 1 + 15000P (in msec)
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Page Replacement

• Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement.

• Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk.

• Page replacement completes separation between logical
memory and physical memory – large virtual memory can be
provided on a smaller physical memory.
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Page-Replacement Algorithms

• Want lowest page-fault rate.

• Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string.

• In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
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First-In-First-Out (FIFO) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

1 1 4 5

2 2 1 3 9 page faults

3 3 2 4

• 4 frames
1 1 5 4

2 2 1 5

3 3 2 10 page faults

4 4 3

• FIFO Replacement – Belady’s Anomaly

– more frames 6⇒ less page faults
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Optimal Algorithm

• Replace page that will not be used for longest period of time.

• 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 4

2 6 page faults

3

4 5

• How do you know this?

• Used for measuring how well your algorithm performs.
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Least Recently Used (LRU) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 5

2

3 5 4

4 3

• Counter implementation

– Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter.

– When a page needs to be changed, look at the counters to
determine which are to change
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LRU Algorithm (Cont.)

• Stack implementation – keep a stack of page numbers in a
double link form:

– Page referenced:
∗ move it to the top
∗ requires 6 pointers to be changed

– No search for replacement
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LRU Approximation Algorithms

• Reference bit

– With each page associate a bit, initially = 0.

– When page is referenced bit set to 1.

– Replace the one which is 0 (if one exists). We do not know
the order, however.

• Second chance

– Need reference bit.

– Clock replacement.

– If page to be replaced (in clock order) has reference bit = 1,
then:
∗ set reference bit 0.
∗ leave page in memory.
∗ replace next page (in clock order), subject to same rules.
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Counting Algorithms

• Keep a counter of the number of references that have been
made to each page.

• LFU Algorithm: replaces page with smallest count.

• MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used.
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Allocation of Frames

• Each process needs minimum number of pages.

• Example: IBM 370 – 6 pages to handle SS MOVE instruction:

– Instruction is 6 bytes, might span 2 pages.

– 2 pages to handle from.

– 2 pages to handle to.

• Two major allocation schemes:

– fixed allocation

– priority allocation
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Fixed Allocation

• Equal allocation – e.g., If 100 frames and 5 processes, give
each 20 pages.

• Proportional allocation – Allocate according to the size of
process.

– si = size of process pi
– S = Σ si
– m = total number of frames
– ai = allocation for pi = si

S × m

m = 64
s1 = 10
s2 = 127
a1 = 10

137 × 64 ≈ 5
a2 = 127

137 × 64 ≈ 59
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Priority Allocation

• Use a proportional allocation scheme using priorities rather
than size.

• If process Pi generates a page fault,

– select for replacement one of its frames.

– select for replacement a frame from a process with lower
priority number.
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Global vs. Local Allocation

• Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame from
another.

• Local replacement – each process selects from only its own
set of allocated frames.
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Thrashing

• If a process does not have “enough” pages, the page-fault rate
is very high. This leads to:

– low CPU utilization.

– operating system thinks that it needs to increase the degree
of multiprogramming.

– another process added to the system.

• Thrashing ≡ a process is busy swapping pages in and out.
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Thrashing Diagram
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• Why does paging work?
Locality model

– Process migrates from one locality to another.
– Localities may overlap.

• Why does thrashing occur?
Σ size of locality > total memory size
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Working-Set Model

• ∆ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 instruction

• WSSi (working set of process Pi ) =
total number of pages referenced in the most recent ∆ (varies
in time)

– If ∆ too small will not encompass entire locality.

– If ∆ too large will encompass several localities.

– If ∆ = ∞ ⇒ will encompass entire program.

• D = Σ WSSi ≡ total demand frames

• If D > m ⇒ thrashing.

• Policy if D > m, then suspend one of the processes.
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Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example: ∆ = 10,000

– Timer interrupts after every 5000 time units.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts copy and sets the values of all
reference bits to 0.

– If one of the bits in memory = 1 ⇒ page in working set.

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units
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Page-Fault Frequency Scheme
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• Establish “acceptable” page-fault rate.

– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.
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Other Considerations

• Prepaging

• Page size selection

– fragmentation

– table size

– I/O overhead

– locality
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Other Considerations (Cont.)

• Program structure

– Array A[1024,1024] of integer

– Each row is stored in one page

– One frame

– Program 1 for j := 1 to 1024 do
for i := 1 to 1024 do

A[i, j ] := 0;

1024 × 1024 page faults

– Program 2 for i := 1 to 1024 do
for j := 1 to 1024 do

A[i, j ] := 0;

1024 page faults

• I/O interlock and addressing
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Demand Segmentation

• Used when insufficient hardware to implement demand paging.

• OS/2 allocates memory in segments, which it keeps track of
through segment descriptors.

• Segment descriptor contains a valid bit to indicate whether the
segment is currently in memory.

– If segment is in main memory, access continues,

– If not in memory, segment fault.
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