/ Module 5: CPU Scheduling I \

Basic Concepts

Scheduling Criteria

Scheduling Algorithms

Multiple-Processor Scheduling

Real-Time Scheduling

Algorithm Evaluation

- /

Operating System Concepts 5.1 Silberschatz and Galvin ©1998

/ Basic Concepts I \

e Maximum CPU utilization obtained with multiprogramming.

e CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and 1/0 wait.

e CPU burst distribution

A

frequency

1 1 1 1 >
0 8 16 24 32 40

K burst duration (milliseconds) /

Operating System Concepts 5.2 Silberschatz and Galvin (©1998

/ CPU Scheduler I \

e Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them.

e CPU scheduling decisions may take place when a process:

1. switches from running to waiting state.
2. switches from running to ready state.
3. switches from waiting to ready.

4. terminates.

e Scheduling under 1 and 4 is nonpreemptive.

e All other scheduling is preemptive.

- /

Operating System Concepts 5.3 Silberschatz and Galvin ©1998

/ Dispatcher I \

¢ Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
— switching context
— switching to user mode
— jumping to the proper location in the user program to restart
that program

e Dispatch latency — time it takes for the dispatcher to stop one
process and start another running.

- /

Operating System Concepts 5.4 Silberschatz and Galvin (©1998

_

Scheduling Criteria I \

e CPU utilization — keep the CPU as busy as possible

time unit

e Turnaround time — amount of time to execute a particular
process

e Waiting time — amount of time a process has been waiting in
the ready queue

was submitted until the first response is produced, not output
(for time-sharing environment)

Throughput — # of processes that complete their execution per

Response time — amount of time it takes from when a request

/

Operatil

ng System Concepts 5.5 Silberschatz and Galvin ©1998

-

_

Optimization Criteria I

e Max CPU utilization
e Max throughput
e Min turnaround time
e Min waiting time

e Min response time

~

/

Operating System Concepts 5.6 Silberschatz and Galvin (©1998

/ First-Come, First-Served (FCFS) Scheduling I \

e Example: Process Burst Time
Py 24
P, 3
Ps 3

e Suppose that the processes arrive in the order: Py, Py, Ps3
The Gantt chart for the schedule is:

0 24 27 30

e Waiting time for P, = 0; P, = 24; P3; = 27
e Average waiting time: (0+24+27)/3=17

- /

Operating System Concepts 5.7 Silberschatz and Galvin ©1998

/ FCFS Scheduling (Cont.) I \

Suppose that the processes arrive in the order:

P>, Ps, Py.

The Gantt chart for the schedule is:

\
0 3 6 30

Waiting time for P, =6; P, =0; P3 =3

Average waiting time: (6 + 0+ 3)/3=3

Much better than previous case.

e Convoy effect. short process behind long process

/

Operating System Concepts 5.8 Silberschatz and Galvin (©1998

/ Shortest-Job-First (SJF) Scheduling I \

e Associate with each process the length of its next CPU burst.
Use these lengths to schedule the process with the shortest
time.

e Two schemes:

— nonpreemptive — once CPU given to the process it cannot
be preempted until it completes its CPU burst.

— preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is known as the
Shortest-Remaining-Time-First (SRTF).

e SJF is optimal — gives minimum average waiting time for a
given set of processes.

/

Operating System Concepts 5.9 Silberschatz and Galvin ©1998

/ Example of Non-Preemptive SJF I \

Process Arrival Time Burst Time
P, 0.0 7
P, 0.2 4
Ps 4.0 1
Py 5.0 4

e SJF (non-preemptive)

P B R P4
i

0 7 8 12 16
Average waitingtime=(0+6+3+7)/4=4

- /

Operating System Concepts 5.10 Silberschatz and Galvin (©1998

/ Example of Preemptive SJF I \

Process Arrival Time Burst Time
Py 0.0 7
P, 0.2 4
Ps 4.0 1
Py 5.0 4

e SRTF (preemptive)

0 2 4 5 7 11 16
Average waiting time =(9+1+ 0+ 2)/4=3

- /

Operating System Concepts 5.11 Silberschatz and Galvin (©1998

/ Determining Length of Next CPU Burst I \

e Can only estimate the length.

e Can be done by using the length of previous CPU bursts, using
exponential averaging.

1. t, = actual length of n'" CPU burst

N

Th+1 = predicted value for the next CPU burst
a,0<a<l
Define:

H W

Toer = a by + (1 — a)7p.

- /

Operating System Concepts 5.12 Silberschatz and Galvin (©1998

/ Examples of Exponential Averaging I \

e =0

— Tp+l = Tn

— Recent history does not count.
e =1

— Tne1 = I

— Only the actual last CPU burst counts.

¢ If we expand the formula, we get:

Tm1 = alp+ (1 — a)at,_1+ ...
+(1 - a)/atn_j + ...
+(1 — Q)n+1T0

e Since both o and (1 — «) are less than or equal to 1, each
K successive term has less weight than its predecessor. /

Operating System Concepts 5.13 Silberschatz and Galvin (©1998

/ Priority Scheduling I \

A priority number (integer) is associated with each process.

e The CPU is allocated to the process with the highest priority
(smallest integer = highest priority).

— preemptive
— nonpreemptive

e SJIN is a priority scheduling where priority is the predicted next
CPU burst time.

e Problem = Starvation — low priority processes may never
execute.

e Solution = Aging — as time progresses increase the priority of
the process.

- /

Operating System Concepts 5.14 Silberschatz and Galvin (©1998

/ Round Robin (RR) I \

e Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready
queue.

e If there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more
than (n — 1)q time units.

e Performance

— @ large = FIFO

— g small = g must be large with respect to context switch,
otherwise overhead is too high.

/

Operating System Concepts 5.15 Silberschatz and Galvin (©1998

/ Example: RR with Time Quantum = 20 I \

Process Burst Time
= 53
P, 17
Ps 68
Py 24

e The Gantt chart is:

0O 20 37 57 77 97 117 121 134 154 162

e Typically, higher average turnaround than SRTF, but better
response.

- /

Operating System Concepts 5.16 Silberschatz and Galvin (©1998

/ Multilevel Queue I \

e Ready queue is partitioned into separate queues;
foreground (interactive)
background (batch)

e Each queue has its own scheduling algorithm,
foreground — RR
background — FCFS

e Scheduling must be done between the queues.
— Fixed priority scheduling; i.e., serve all from foreground
then from background. Possibility of starvation.

— Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e.,
80% to foreground in RR
20% to background in FCFS

- /

Operating System Concepts 5.17 Silberschatz and Galvin (©1998

/ Multilevel Feedback Queue I \

e A process can move between the various queues; aging can
be implemented this way.

e Multilevel-feedback-queue scheduler defined by the following
parameters:
— number of queues
— scheduling algorithm for each queue
— method used to determine when to upgrade a process
— method used to determine when to demote a process

— method used to determine which queue a process will enter
when that process needs service

- /

Operating System Concepts 5.18 Silberschatz and Galvin (©1998

/ Example of Multilevel Feedback Queue I \

e Three queues:

— @Qp — time quantum 8 milliseconds
— Q1 —time quantum 16 milliseconds
- Qz — FCFS

e Scheduling

— A new job enters queue Qp which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q.

— At Q1, job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q..

- /

Operating System Concepts 5.19 Silberschatz and Galvin (©1998

/ Multiple-Processor Scheduling I \

e CPU scheduling more complex when multiple CPUs are
available.

e Homogeneous processors within a multiprocessor.
e Load sharing

e Asymmetric multiprocessing — only one processor accesses
the system data structures, alleviating the need for data
sharing.

- /

Operating System Concepts 5.20 Silberschatz and Galvin (©1998

~

/ Real-Time Scheduling I

e Hard real-time systems — required to complete a critical task
within a guaranteed amount of time.

e Soft real-time computing — requires that critical processes
receive priority over less fortunate ones.

- /

Silberschatz and Galvin (©1998

Operating System Concepts 5.21

~

/ Algorithm Evaluation I

e Deterministic modeling — takes a particular predetermined
workload and defines the performance of each algorithm for

that workload.
e Queueing models

e Implementation

- /

Silberschatz and Galvin (©1998

Operating System Concepts 5.22

	Basic Concepts
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Optimization Criteria
	 First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Shortest-Job-First (SJF) Scheduling
	Example of Non-Preemptive SJF
	Example of Preemptive SJF
	Determining Length of Next CPU Burst
	Examples of Exponential Averaging
	Priority Scheduling
	Round Robin (RR)
	Example: RR with Time Quantum = 20
	Multilevel Queue
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multiple-Processor Scheduling
	Real-Time Scheduling
	Algorithm Evaluation

