
'

&

$

%

Module 17: Distributed-File Systems

• Background

• Naming and Transparency

• Remote File Access

• Stateful versus Stateless Service

• File Replication

• Example Systems

Operating System Concepts 17.1 Silberschatz and Galvin c©1998

'

&

$

%

Background

• Distributed file system (DFS) – a distributed implementation of
the classical time-sharing model of a file system, where
multiple users share files and storage resources.

• A DFS manages sets of dispersed storage devices.

• Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces.

• There is usually a correspondence between constituent
storage spaces and sets of files.

Operating System Concepts 17.2 Silberschatz and Galvin c©1998

'

&

$

%

DFS Structure

• Service – software entity running on one or more machines
and providing a particular type of function to a priori unknown
clients.

• Server – service software running on a single machine.

• Client – process that can invoke a service using a set of
operations that forms its client interface.

• A client interface for a file service is formed by a set of primitive
file operations (create, delete, read, write).

• Client interface of a DFS should be transparent, i.e., not
distinguish between local and remote files.

Operating System Concepts 17.3 Silberschatz and Galvin c©1998

'

&

$

%

Naming and Transparency

• Naming – mapping between logical and physical objects.

• Multilevel mapping – abstraction of a file that hides the details
of how and where on the disk the file is actually stored.

• A transparent DFS hides the location where in the network the
file is stored.

• For a file being replicated in several sites, the mapping returns
a set of the locations of this file’s replicas; both the existence of
multiple copies and their location are hidden.

Operating System Concepts 17.4 Silberschatz and Galvin c©1998

'

&

$

%

Naming Structures

• Location transparency – file name does not reveal the file’s
physical storage location.

– File name still denotes a specific, although hidden, set of
physical disk blocks.

– Convenient way to share data.

– Can expose correspondence between component units and
machines.

• Location independence – file name does not need to be
changed when the file’s physical storage location changes.

– Better file abstraction.

– Promotes sharing the storage space itself.

– Separates the naming hierarchy from the storage-devices
hierarchy.

Operating System Concepts 17.5 Silberschatz and Galvin c©1998

'

&

$

%

Naming Schemes — Three Main Approaches

• Files named by combination of their host name and local
name; guarantees a unique systemwide name.

• Attach remote directories to local directories, giving the
appearance of a coherent directory tree; only previously
mounted remote directories can be accessed transparently.

• Total integration of the component file systems.

– A single global name structure spans all the files in the
system.

– If a server is unavailable; some arbitrary set of directories
on different machines also becomes unavailable.

Operating System Concepts 17.6 Silberschatz and Galvin c©1998

'

&

$

%

Remote File Access

• Reduce network traffic by retaining recently accessed disk
blocks in a cache, so that repeated accesses to the same
information can be handled locally.

– If needed data not already cached, a copy of data is
brought from the server to the user.

– Accesses are performed on the cached copy.

– Files identified with one master copy residing at the server
machine, but copies of (parts of) the file are scattered in
different caches.

• Cache-consistency problem – keeping the cached copies
consistent with the master file.

Operating System Concepts 17.7 Silberschatz and Galvin c©1998

'

&

$

%

Location – Disk Caches vs. Main Memory Cache

• Advantages of disk caches

– More reliable.

– Cached data kept on disk are still there during recovery and
don’t need to be fetched again.

• Advantages of main-memory caches:

– Permit workstations to be diskless.

– Data can be accessed more quickly.

– Performance speedup in bigger memories.

– Server caches (used to speed up disk I/O) are in main
memory regardless of where user caches are located;
using main-memory caches on the user machine permits a
single caching mechanism for servers and users.

Operating System Concepts 17.8 Silberschatz and Galvin c©1998

'

&

$

%

Cache Update Policy

• Write-through – write data through to disk as soon as they are
placed on any cache. Reliable, but poor performance.

• Delayed-write – modifications written to the cache and then
written through to the server later. Write accesses complete
quickly; some data may be overwritten before they are written
back, and so need never be written at all.

– Poor reliability; unwritten data will be lost whenever a user
machine crashes.

– Variation – scan cache at regular intervals and flush blocks
that have been modified since the last scan.

– Variation – write-on-close, writes data back to the server
when the file is closed. Best for files that are open for long
periods and frequently modified.

Operating System Concepts 17.9 Silberschatz and Galvin c©1998

'

&

$

%

Consistency

• Is locally cached copy of the data consistent with the master
copy?

• Client-initiated approach

– Client initiates a validity check.

– Server checks whether the local data are consistent with
the master copy.

• Server-initiated approach

– Server records, for each client, the (parts of) files it caches.

– When server detects a potential inconsistency, it must react.

Operating System Concepts 17.10 Silberschatz and Galvin c©1998

'

&

$

%

Comparing Caching and Remote Service

• In caching, many remote accesses handled efficiently by the
local cache; most remote accesses will be served as fast as
local ones.

• Servers are contacted only occasionally in caching (rather than
for each access).

– Reduces server load and network traffic.

– Enhances potential for scalability.

• Remote server method handles every remote access across
the network; penalty in network traffic, server load, and
performance.

• Total network overhead in transmitting big chunks of data
(caching) is lower than a series of responses to specific
requests (remote-service).

Operating System Concepts 17.11 Silberschatz and Galvin c©1998

'

&

$

%

Caching and Remote Service (Cont.)

• Caching is superior in access patterns with infrequent writes.
With frequent writes, substantial overhead incurred to
overcome cache-consistency problem.

• Benefit from caching when execution carried out on machines
with either local disks or large main memories.

• Remote access on diskless, small-memory-capacity machines
should be done through remote-service method.

• In caching, the lower intermachine interface is different from
the upper user interface.

• In remote-service, the intermachine interface mirrors the local
user-file-system interface.

Operating System Concepts 17.12 Silberschatz and Galvin c©1998

'

&

$

%

Stateful File Service

• Mechanism.

– Client opens a file.

– Server fetches information about the file from its disk,
stores it in its memory, and gives the client a connection
identifier unique to the client and the open file.

– Identifier is used for subsequent accesses until the session
ends.

– Server must reclaim the main-memory space used by
clients who are no longer active.

• Increased performance.

– Fewer disk accesses.

– Stateful server knows if a file was opened for sequential
access and can thus read ahead the next blocks.

Operating System Concepts 17.13 Silberschatz and Galvin c©1998

'

&

$

%

Stateless File Server

• Avoids state information by making each request
self-contained.

• Each request identifies the file and position in the file.

• No need to establish and terminate a connection by open and
close operations.

Operating System Concepts 17.14 Silberschatz and Galvin c©1998

'

&

$

%

Distinctions between Stateful & Stateless Service

• Failure Recovery.

– A stateful server loses all its volatile state in a crash.
∗ Restore state by recovery protocol based on a dialog with

clients, or abort operations that were underway when the
crash occurred.

∗ Server needs to be aware of client failures in order to
reclaim space allocated to record the state of crashed
client processes (orphan detection and elimination).

– With stateless server, the effects of server failures and
recovery are almost unnoticeable. A newly reincarnated
server can respond to a self-contained request without any
difficulty.

Operating System Concepts 17.15 Silberschatz and Galvin c©1998

'

&

$

%

Distinctions (Cont.)

• Penalties for using the robust stateless service:

– longer request messages

– slower request processing

– additional constraints imposed on DFS design

• Some environments require stateful service.

– A server employing server-initiated cache validation cannot
provide stateless service, since it maintains a record of
which files are cached by which clients.

– UNIX use of file descriptors and implicit offsets is inherently
stateful; servers must maintain tables to map the file
descriptors to inodes, and store the current offset within a
file.

Operating System Concepts 17.16 Silberschatz and Galvin c©1998

'

&

$

%

File Replication

• Replicas of the same file reside on failure-independent
machines.

• Improves availability and can shorten service time.

• Naming scheme maps a replicated file name to a particular
replica.

– Existence of replicas should be invisible to higher levels.

– Replicas must be distinguished from one another by
different lower-level names.

• Updates – replicas of a file denote the same logical entity, and
thus an update to any replica must be reflected on all other
replicas.

• Demand replication – reading a nonlocal replica causes it to be
cached locally, thereby generating a new nonprimary replica.

Operating System Concepts 17.17 Silberschatz and Galvin c©1998

'

&

$

%

Example Systems

• UNIX United

• The Sun Network File System (NFS)

• Andrew

• Sprite

• Locus

Operating System Concepts 17.18 Silberschatz and Galvin c©1998

'

&

$

%

UNIX United

• Early attempt to scale up UNIX to a distributed file system
without modifying the UNIX kernel.

• Adds software subsystem to set of interconnected UNIX

systems (component or constituent systems).

• Constructs a distributed system that is functionally
indistinguishable from conventional centralized UNIX system.

• Interlinked UNIX systems compose a UNIX United system
joined together into a single naming structure, in which each
component system functions as a directory.

• The component unit is a complete UNIX directory tree
belonging to a certain machine; position of component units in
naming hierarchy is arbitrary.

Operating System Concepts 17.19 Silberschatz and Galvin c©1998

'

&

$

%

UNIX United (Cont.)

• Roots of component units are assigned names so that they
become accessible and distinguishable externally.

• Traditional root directories (e.g., /dev, /temp) are maintained for
each machine separately.

• Each component system has own set of named users and own
administrator (superuser).

• Superuser is responsible for accrediting users of his own
system, as well as for remote users.

Operating System Concepts 17.20 Silberschatz and Galvin c©1998

'

&

$

%

UNIX United (Cont.)

• The Newcastle Connection – user-level software layer
incorporated in each component system. This layer:

– Separates the UNIX kernel and the user-level programs.

– Intercepts all system calls concerning files, and filters out
those that have to be redirected to remote systems.

– Accepts system calls that have been directed to it from
other systems.

Operating System Concepts 17.21 Silberschatz and Galvin c©1998

'

&

$

%

The Sun Network File System (NFS)

• An implementation and a specification of a software system for
accessing remote files across LANs (or WANs).

• The implementation is part of the SunOS operating system
(version of 4.2BSD UNIX), running on a Sun workstation using
an unreliable datagram protocol (UDP/IP protocol) and
Ethernet.

Operating System Concepts 17.22 Silberschatz and Galvin c©1998

'

&

$

%

NFS (Cont.)

• Interconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing
among these file systems in a transparent manner.

– A remote directory is mounted over a local file system
directory. The mounted directory looks like an integral
subtree of the local file system, replacing the subtree
descending from the local directory.

– Specification of the remote directory for the mount
operation is nontransparent; the host name of the remote
directory has to be provided. Files in the remote directory
can then be accessed in a transparent manner.

– Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory.

Operating System Concepts 17.23 Silberschatz and Galvin c©1998

'

&

$

%

NFS (Cont.)

• NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network
architectures; the NFS specification is independent of these
media.

• This independence is achieved through the use of RPC

primitives built on top of an External Data Representation
(XDR) protocol used between two implementation-independent
interfaces.

• The NFS specification distinguishes between the services
provided by a mount mechanism and the actual
remote-file-access services.

Operating System Concepts 17.24 Silberschatz and Galvin c©1998

'

&

$

%

NFS Mount Protocol

• Establishes initial logical connection between server and client.

• Mount operation includes name of remote directory to be
mounted and name of server machine storing it.

– Mount request is mapped to corresponding RPC and
forwarded to mount server running on server machine.

– Export list – specifies local file systems that server exports
for mounting, along with names of machines that are
permitted to mount them.

• Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses.

• File handle – a file-system identifier, and an inode number to
identify the mounted directory within the exported file system.

• The mount operation changes only the user’s view and does
not affect the server side.

Operating System Concepts 17.25 Silberschatz and Galvin c©1998

'

&

$

%

NFS Protocol

• Provides a set of remote procedure calls for remote file
operations. The procedures support the following operations:

– searching for a file within a directory

– reading a set of directory entries

– manipulating links and directories

– accessing file attributes

– reading and writing files

• NFS servers are stateless; each request has to provide a full
set of arguments.

• Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching).

• The NFS protocol does not provide concurrency-control
mechanisms.

Operating System Concepts 17.26 Silberschatz and Galvin c©1998

'

&

$

%

Three Major Layers of NFS Architecture

• UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors).

• Virtual File System (VFS) layer – distinguishes local files from
remote ones, and local files are further distinguished according
to their file-system types.

– The VFS activates file-system-specific operations to handle
local requests according to their file-system types.

– Calls the NFS protocol procedures for remote requests.

• NFS service layer – bottom layer of the architecture;
implements the NFS protocol.

Operating System Concepts 17.27 Silberschatz and Galvin c©1998

'

&

$

%

Schematic View of NFS Architecture

disk

client

system-calls interface

VFS interface

UNIX 4.2 file
systems

other types of
file systems NFS client

disk

VFS interface

UNIX 4.2 file
systems

RPC/XDR

network

NFS server

RPC/XDR

server

Operating System Concepts 17.28 Silberschatz and Galvin c©1998

'

&

$

%

NFS Path-Name Translation

• Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of
component name and directory vnode.

• To make lookup faster, a directory name lookup cache on the
client’s side holds the vnodes for remote directory names.

Operating System Concepts 17.29 Silberschatz and Galvin c©1998

'

&

$

%

NFS Remote Operations

• Nearly one-to-one correspondence between regular UNIX
system calls and the NFS protocol RPCs (except opening and
closing files).

• NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance.

• File-blocks cache – when a file is opened, the kernel checks
with the remote server whether to fetch or revalidate the
cached attributes. Cached file blocks are used only if the
corresponding cached attributes are up to date.

• File-attribute cache – the attribute cache is updated whenever
new attributes arrive from the server.

• Clients do not free delayed-write blocks until the server
confirms that the data have been written to disk.

Operating System Concepts 17.30 Silberschatz and Galvin c©1998

'

&

$

%

ANDREW

• A distributed computing environment under development since
1983 at Carnegie-Mellon University.

• Andrew is highly scalable; the system is targeted to span over
5000 workstations.

• Andrew distinguishes between client machines (workstations)
and dedicated server machines. Servers and clients run the
4.2BSD UNIX OS and are interconnected by an internet of LANs.

Operating System Concepts 17.31 Silberschatz and Galvin c©1998

'

&

$

%

ANDREW (Cont.)

• Clients are presented with a partitioned space of file names: a
local name space and a shared name space.

• Dedicated servers, called Vice, present the shared name
space to the clients as an homogeneous, identical, and
location transparent file hierarchy.

• The local name space is the root file system of a workstation,
from which the shared name space descends.

• Workstations run the Virtue protocol to communicate with Vice,
and are required to have local disks where they store their
local name space.

• Servers collectively are responsible for the storage and
management of the shared name space.

Operating System Concepts 17.32 Silberschatz and Galvin c©1998

'

&

$

%

ANDREW (Cont.)

• Clients and servers are structured in clusters interconnected
by a backbone LAN.

• A cluster consists of a collection of workstations and a cluster
server and is connected to the backbone by a router.

• A key mechanism selected for remote file operations is whole
file caching. Opening a file causes it to be cached, in its
entirety, on the local disk.

Operating System Concepts 17.33 Silberschatz and Galvin c©1998

'

&

$

%

ANDREW Shared Name Space

• Andrew’s volumes are small component units associated with
the files of a single client.

• A fid identifies a Vice file or directory. A fid is 96 bits long and
has three equal-length components:

– volume number

– vnode number – index into an array containing the inodes of
files in a single volume.

– uniquifier – allows reuse of vnode numbers, thereby
keeping certain data structures compact.

• Fids are location transparent; therefore, file movements from
server to server do not invalidate cached directory contents.

• Location information is kept on a volume basis, and the
information is replicated on each server.

Operating System Concepts 17.34 Silberschatz and Galvin c©1998

'

&

$

%

ANDREW File Operations

• Andrew caches entire files from servers. A client workstation
interacts with Vice servers only during opening and closing of
files.

• Venus – caches files from Vice when they are opened, and
stores modified copies of files back when they are closed.

• Reading and writing bytes of a file are done by the kernel
without Venus intervention on the cached copy.

• Venus caches contents of directories and symbolic links, for
path-name translation.

• Exceptions to the caching policy are modifications to
directories that are made directly on the server responsible for
that directory.

Operating System Concepts 17.35 Silberschatz and Galvin c©1998

'

&

$

%

ANDREW Implementation

• Client processes are interfaced to a UNIX kernel with the usual
set of system calls.

• Venus carries out path-name translation component by
component.

• The UNIX file system is used as a low-level storage system for
both servers and clients. The client cache is a local directory
on the workstation’s disk.

• Both Venus and server processes access UNIX files directly by
their inodes to avoid the expensive path name-to-inode
translation routine.

Operating System Concepts 17.36 Silberschatz and Galvin c©1998

'

&

$

%

ANDREW Implementation (Cont.)

• Venus manages two separate caches:

– one for status

– one for data

• LRU algorithm used to keep each of them bounded in size

• The status cache is kept in virtual memory to allow rapid
servicing of stat (file status returning) system calls.

• The data cache is resident on the local disk, but the UNIX I/O

buffering mechanism does some caching of the disk blocks in
memory that are transparent to Venus.

Operating System Concepts 17.37 Silberschatz and Galvin c©1998

'

&

$

%

SPRITE

• An experimental distributed OS under development at the Univ.
of California at Berkeley; part of the Spur project – design and
construction of a high-performance multiprocessor workstation.

• Targets a configuration of large, fast disks on a few servers
handling storage for hundreds of diskless workstations which
are interconnected by LANs.

• Because file caching is used, the large physical memories
compensate for the lack of local disks.

• Interface similar to UNIX; file system appears as a single UNIX
tree encompassing all files and devices in the network, equally
and transparently accessible from every workstation.

• Enforces consistency of shared files and emulates a single
time-sharing UNIX system in a distributed environment.

Operating System Concepts 17.38 Silberschatz and Galvin c©1998

'

&

$

%

SPRITE (Cont.)

• Uses backing files to store data and stacks of running
processes, simplifying process migration and enabling
flexibility and sharing of the space allocated for swapping.

• The virtual memory and file system share the same cache and
negotiate on how to divide it according to their conflicting
needs.

• Sprite provides a mechanism for sharing an address space
between client processes on a single workstation (in UNIX, only
code can be shared among processes).

Operating System Concepts 17.39 Silberschatz and Galvin c©1998

'

&

$

%

SPRITE Prefix Tables

• A single file-system hierarchy composed of several subtrees
called domains (component units), with each server providing
storage for one or more domains.

• Prefix table – a server map maintained by each machine to
map domains to servers.

• Each entry in a prefix table corresponds to one of the domains.
It contains:
– the name of the topmost directory in the domain (prefix for

the domain).
– the network address of the server storing the domain.
– a numeric designator identifying the domain’s root directory

for the storing server.

• The prefix mechanism ensures that the domain’s files can be
opened and accessed from any machine regardless of the
status of the servers of domains above the particular domain.

Operating System Concepts 17.40 Silberschatz and Galvin c©1998

'

&

$

%

SPRITE Prefix Tables (Cont.)

• Lookup operation for an absolute path name:

– Client searches its prefix table for the longest prefix
matching the given file name.

– Client strips the matching prefix from the file name and
sends the remainder of the name to the selected server
along with the designator from the prefix-table entry.

– Server uses this designator to locate the root directory of
the domain, and then proceeds by usual UNIX path-name
translation for the remainder of the file name.

– If server succeeds in completing the translation, it replies
with a designator for the open file.

Operating System Concepts 17.41 Silberschatz and Galvin c©1998

'

&

$

%

Cases Where Server Does Not Complete Lookup

• Server encounters an absolute path name in a symbolic link.
Absolute path name returned to client, which looks up the new
name in its prefix table and initiates another lookup with a new
server.

• If a path name ascends past the root of a domain, the server
returns the remainder of the path name to the client, which
combines the remainder with the prefix of the domain that was
just exited to form a new absolute path name.

• If a path name descends into a new domain or if a root of a
domain is beneath a working directory and a file in that domain
is referred to with a relative path name, a remote link (a special
marker file) is placed to indicate domain boundaries. When a
server encounters a remote link, it returns the file name to the
client.

Operating System Concepts 17.42 Silberschatz and Galvin c©1998

'

&

$

%

Incomplete Lookup (Cont.)

• When a remote link is encountered by the server, it indicates
that the client lacks an entry for a domain — the domain whose
remote link was encountered.

• To obtain the missing prefix information, a client broadcasts a
file name.

– broadcast – network message seen by all systems on the
network.

– The server storing that file responds with the prefix-table
entry for this file, including the string to use as a prefix, the
server’s address, and the descriptor corresponding to the
domain’s root.

– The client then can fill in the details in its prefix table.

Operating System Concepts 17.43 Silberschatz and Galvin c©1998

'

&

$

%

SPRITE Caching and Consistency

• Capitalizing on the large main memories and advocating
diskless workstations, file caches are stored in memory,
instead of on local disks.

• Caches are organized on a block (4K) basis, rather than on a
file basis.

• Each block in the cache is virtually addressed by the file
designator and a block location within the file; enables clients
to create new blocks in the cache and to locate any block
without the file inode being brought from the server.

• A delayed-write approach is used to handle file modification.

Operating System Concepts 17.44 Silberschatz and Galvin c©1998

'

&

$

%

SPRITE Caching and Consistency (Cont.)

• Consistency of shared files enforced through version-number
scheme; a file’s version number is incremented whenever a file
is opened in write mode.

• Notifying the servers whenever a file is opened or closed
prohibits performance optimizations such as name caching.

• Servers are centralized control points for cache consistency;
they maintain state information about open files.

Operating System Concepts 17.45 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS

• Project at the Univ. of California at Los Angeles to build a
full-scale distributed OS; upward-compatible with UNIX, but the
extensions are major and necessitate an entirely new kernel.

• File system is a single tree-structure naming hierarchy which
covers all objects of all the machines in the system.

• Locus names are fully transparent.

• A Locus file may correspond to a set of copies distributed on
different sites.

• File replication increases availability for reading purposes in
the event of failures and partitions.

• A primary-copy approach is adopted for modifications.

Operating System Concepts 17.46 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS (Cont.)

• Locus adheres to the same file-access semantics as standard
UNIX.

• Emphasis on high performance led to the incorporation of
networking functions into the operating system.

• Specialized remote operations protocols used for
kernel-to-kernel communication, rather than the RPC protocol.

• Reducing the number of network layers enables performance
for remote operations, but this specialized protocol hampers
the portability of Locus.

Operating System Concepts 17.47 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS Name Structure

• Logical filegroups form a unified structure that disguises
location and replication details from clients and applications.

• A logical filegroup is mapped to multiple physical containers (or
packs) that reside at various sites and that store file replicas of
that filegroup.

• The <logical-filegroup-number, inode number> (the file’s
designator) serves as a globally unique low-level name for a
file.

Operating System Concepts 17.48 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS Name Structure (Cont.)

• Each site has a consistent and complete view of the logical
name structure.

– Globally replicated logical mount table contains an entry for
each logical filegroup.

– An entry records the file designator of the directory over
which the filegroup is logically mounted, and indication of
which site is currently responsible for access
synchronization within the filegroup.

• An individual pack is identified by pack numbers and a logical
filegroup number.

• One pack is designated as the primary copy.

– a file must be stored at the primary copy site

– a file can be stored also at any subset of the other sites
where there exists a pack corresponding to its filegroup.

Operating System Concepts 17.49 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS Name Structure (Cont.)

• The various copies of a file are assigned the same inode
number on all the filegroup’s packs.

– Reference over the network to data pages use logical,
rather than physical, page numbers.

– Each pack has a mapping of these logical numbers to its
physical numbers.

– Each inode of a file copy contains a version number,
determining which copy dominates other copies.

• Container table at each site maps logical filegroup numbers to
disk locations for the filegroups that have packs locally on this
site.

Operating System Concepts 17.50 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS File Access

• Locus distinguishes three logical roles in file accesses, each
one potentially performed by a different site:

– Using site (US) – issues requests to open and access a
remote file.

– Storage site (SS) – site selected to serve requests.

– Current synchronization site (CSS) – maintains the
version number and a list of physical containers for every
file in the filegroup.
∗ Enforces global synchronization policy for a filegroup.
∗ Selects an SS for each open request referring to a file in

the filegroup.
∗ At most one CSS for each filegroup in any set of

communicating sites.

Operating System Concepts 17.51 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS Synchronized Accesses to Files

• Locus tries to emulate conventional UNIX semantics on file
accesses in a distributed environment.

– Multiple processes are permitted to have the same file open
concurrently.

– These processes issue read and write system calls.

– The system guarantees that each successive operation
sees the effects of the ones that precede it.

• In Locus, the processes share the same operating-system data
structures and caches, and by using locks on data structures
to serialize requests.

Operating System Concepts 17.52 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS Two Sharing Modes

• A single token scheme allows several processes descending
from the same ancestor to share the same position (offset) in a
file. A site can proceed to execute system calls that need the
offset only when the token is present.

• A multiple-data-tokens scheme synchronizes sharing of the
file’s in-core inode and data.

– Enforces a single exclusive-writer, multiple-readers policy.

– Only a site with the write token for a file may modify the file,
and any site with a read token can read the file.

• Both token schemes are coordinated by token managers
operating at the corresponding storage sites.

Operating System Concepts 17.53 Silberschatz and Galvin c©1998

'

&

$

%

LOCUS Operation in a Faulty Environment

• Maintain, within a single partition, strict synchronization among
copies of a file, so that all clients of that file within that partition
see the most recent version.

• Primary-copy approach eliminates conflicting updates, since
the primary copy must be in the client’s partition to allow an
update.

• To detect and propagate updates, the system maintains a
commit count which enumerates each commit of every file in
the filegroup.

• Each pack has a lower-water mark (lwm) that is a
commit-count value, up to which the system guarantees that all
prior commits are reflected in the pack.

Operating System Concepts 17.54 Silberschatz and Galvin c©1998

	Background
	DFS Structure
	Naming and Transparency
	Naming Structures
	Naming Schemes --- Three Main Approaches
	Remote File Access
	Location -- Disk Caches vs. Main Memory Cache
	Cache Update Policy
	Consistency
	Comparing Caching and Remote Service
	Caching and Remote Service (Cont.)
	Stateful File Service
	Stateless File Server
	Distinctions between Stateful & Stateless Service
	Distinctions (Cont.)
	File Replication
	Example Systems
	UNIX United
	UNIX United (Cont.)
	UNIX United (Cont.)
	The Sun Network File System
	NFS (Cont.)
	NFS (Cont.)
	NFS Mount Protocol
	NFS Protocol
	Three Major Layers of NFS Architecture
	Schematic View of NFS Architecture
	NFS Path-Name Translation
	NFS Remote Operations
	ANDREW
	ANDREW (Cont.)
	ANDREW (Cont.)
	ANDREW Shared Name Space
	ANDREW File Operations
	ANDREW Implementation
	ANDREW Implementation (Cont.)
	SPRITE
	SPRITE (Cont.)
	SPRITE Prefix Tables
	SPRITE Prefix Tables (Cont.)
	Cases Where Server Does Not Complete Lookup
	Incomplete Lookup (Cont.)
	SPRITE Caching and Consistency
	SPRITE Caching and Consistency (Cont.)
	LOCUS
	LOCUS (Cont.)
	LOCUS Name Structure
	LOCUS Name Structure (Cont.)
	LOCUS Name Structure (Cont.)
	LOCUS File Access
	LOCUS Synchronized Accesses to Files
	LOCUS Two Sharing Modes
	LOCUS Operation in a Faulty Environment

