
'

&

$

%

Module 11: File-System Implementation

• File-System Structure

• Allocation Methods

• Free-Space Management

• Directory Implementation

• Efficiency and Performance

• Recovery

Operating System Concepts 11.1 Silberschatz and Galvin c©1998

'

&

$

%

File-System Structure

• File structure

– Logical storage unit

– Collection of related information

• File system resides on secondary storage (disks).

• File system organized into layers.

• File control block – storage structure consisting of information
about a file.

Operating System Concepts 11.2 Silberschatz and Galvin c©1998



'

&

$

%

Contiguous Allocation

• Each file occupies a set of contiguous blocks on the disk.

• Simple – only starting location (block #) and length (number of
blocks) are required.

• Random access.

• Wasteful of space (dynamic storage-allocation problem).

• Files cannot grow.

• Mapping from logical to physical.
Q

R
LA/512

– Block to be accessed = Q + starting address

– Displacement into block = R

Operating System Concepts 11.3 Silberschatz and Galvin c©1998

'

&

$

%

Linked Allocation

• Each file is a linked list of disk blocks; blocks may be scattered
anywhere on the disk.

pointerblock =

Operating System Concepts 11.4 Silberschatz and Galvin c©1998



'

&

$

%

• Allocate as needed, link together; e.g., file starts at block 9

directory

0 1 2 3

4 5 6 7

8 9 10 11

12 14 15

16 17 19

20 21 22 23

24 25 26 27

28 29 30 31

start

9

end

25

file

jeep10

16 25

1

–1

13

18

Operating System Concepts 11.5 Silberschatz and Galvin c©1998

'

&

$

%

Linked Allocation (Cont.)

• Simple – need only starting address

• Free-space management system – no waste of space

• No random access

• Mapping

LA/511
Q

R

– Block to be accessed is the Qth block in the linked chain of
blocks representing the file.

– Displacement into block = R + 1

• File-allocation table (FAT) – disk-space allocation used by
MS-DOS and OS/2.

Operating System Concepts 11.6 Silberschatz and Galvin c©1998



'

&

$

%

Indexed Allocation

• Brings all pointers together into the index block.

• Logical view

index table

Operating System Concepts 11.7 Silberschatz and Galvin c©1998

'

&

$

%

Example of Indexed Allocation

directory

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

index block

19

file

jeep

19

9 
16 
1 

10 
25 
–1 
–1 
–1 

15

6

Operating System Concepts 11.8 Silberschatz and Galvin c©1998



'

&

$

%

Indexed Allocation (Cont.)

• Need index table

• Random access

• Dynamic access without external fragmentation, but have
overhead of index block.

• Mapping from logical to physical in a file of maximum size of
256K words and block size of 512 words. We need only 1 block
for index table.

Q

R
LA/512

– Q = displacement into index table

– R = displacement into block

Operating System Concepts 11.9 Silberschatz and Galvin c©1998

'

&

$

%

Indexed Allocation – Mapping (Cont.)

• Mapping from logical to physical in a file of unbounded length
(block size of 512 words).

• Linked scheme – Link blocks of index tables (no limit on size).
Q

R

1

1
LA/(512 x 511)

– Q1 = block of index table

– R1 is used as follows:

R1
Q

R
2

2
/512

– Q2 = displacement into block of index table

– R2 = displacement into block of file

Operating System Concepts 11.10 Silberschatz and Galvin c©1998



'

&

$

%

Indexed Allocation – Mapping (Cont.)

• Two-level index (maximum file size is 5123)
Q

R

1

1
LA/(512 x 512)

– Q1 = displacement into outer-index

– R1 is used as follows:

R1
Q

R
2

2
/512

– Q2 = displacement into block of index table

– R2 = displacement into block of file

Operating System Concepts 11.11 Silberschatz and Galvin c©1998

'

&

$

%

Indexed Allocation – Mapping (Cont.)

...

file

outer-index

index table

Operating System Concepts 11.12 Silberschatz and Galvin c©1998



'

&

$

%

Combined Scheme: UNIX (4K bytes per block)

mode 

owners (2)

timestamps (3)

size block 

count

single indirect

double indirect

triple indirect

direct blocks
. . .

data. . .
data

data

data

data

data

. . .

. . .

. . .

. . .

data

data

data

data

Operating System Concepts 11.13 Silberschatz and Galvin c©1998

'

&

$

%

Free-Space Management

• Bit vector (n blocks)

...
0 1 2 -1n

bit[i ] =

{
0 ⇒ block[i ] free

1 ⇒ block[i ] occupied

• Block number calculation

(number of bits per word) ∗
(number of 0-value words) +
offset of first 1 bit

Operating System Concepts 11.14 Silberschatz and Galvin c©1998



'

&

$

%

Free-Space Management (Cont.)

• Bit map requires extra space. Example:

block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/ 212 = 218 bits (or 32K bytes)

• Easy to get contiguous files

• Linked list (free list)

– Cannot get contiguous space easily

– No waste of space

• Grouping

• Counting

Operating System Concepts 11.15 Silberschatz and Galvin c©1998

'

&

$

%

Free-Space Management (Cont.)

• Need to protect:

– Pointer to free list

– Bit map
∗ Must be kept on disk.
∗ Copy in memory and disk may differ.
∗ Cannot allow for block[i ] to have a situation where bit[i ] =

1 in memory and bit[i ] = 0 on disk.

– Solution:
∗ Set bit[i ] = 1 in disk.
∗ Allocate block[i ].
∗ Set bit[i ] = 1 in memory.

Operating System Concepts 11.16 Silberschatz and Galvin c©1998



'

&

$

%

Directory Implementation

• Linear list of file names with pointers to the data blocks.

– simple to program

– time-consuming to execute

• Hash Table – linear list with hash data structure.

– decreases directory search time

– collisions – situations where two file names hash to the
same location

– fixed size

Operating System Concepts 11.17 Silberschatz and Galvin c©1998

'

&

$

%

Efficiency and Performance

• Efficiency dependent on:

– disk allocation and directory algorithms

– types of data kept in file’s directory entry

• Performance

– disk cache – separate section of main memory for
frequently used blocks

– free-behind and read-ahead – techniques to optimize
sequential access

– improve PC performance by dedicating section of memory
as virtual disk, or RAM disk

Operating System Concepts 11.18 Silberschatz and Galvin c©1998



'

&

$

%

Various Disk-Caching Locations

diskCPU controller

main memory

block buffer

open-file table

ram disk

track 
buffer

Operating System Concepts 11.19 Silberschatz and Galvin c©1998

'

&

$

%

Recovery

• Consistency checker – compares data in directory structure
with data blocks on disk, and tries to fix inconsistencies.

• Use system programs to back up data from disk to another
storage device (floppy disk, magnetic tape).

• Recover lost file or disk by restoring data from backup.

Operating System Concepts 11.20 Silberschatz and Galvin c©1998


	File-System Structure
	Contiguous Allocation
	Linked Allocation
	Linked Allocation (Cont.)
	Indexed Allocation
	Example of Indexed Allocation
	Indexed Allocation (Cont.)
	Indexed Allocation -- Mapping (Cont.)
	Indexed Allocation -- Mapping (Cont.)
	Indexed Allocation -- Mapping (Cont.)
	Combined Scheme: UNIX (4K bytes per block)
	Free-Space Management
	Free-Space Management (Cont.)
	Free-Space Management (Cont.)
	Directory Implementation
	Efficiency and Performance
	Various Disk-Caching Locations
	Recovery

