
© 1999 by Ethan L. Miller 19-1

Protection

• What is protection (vs. security)?
• Protection domains
• Describing protection: access matrix
• Implementing protection

» Implementing an access matrix
» Using capabilities for protection
» Granting & revoking access rights

• Implementing protection in computer languages

© 1999 by Ethan L. Miller 19-2

What is Protection?

• Computer system consists of a collection of hardware and
software objects

» Each object has a unique name
» Each object may be accessed through a set of operations,

potentially different for different objects

• Problems
» Which operations are allowed on various objects?
» Who may perform the operations?

• Protection defines the relationship between things that may
perform operations (e.g., processes) and objects that may
have operations done on them

• Security enforces the policies that protection defines



© 1999 by Ethan L. Miller 19-3

Protection Domains

• Access right is
<object-name, set-of-rights>

» Set-of-rights is a subset of all
valid operations that can be
performed on the object

» Identical rights may occur in
different domains

• A protection domain is a
collection of access rights for
one or more objects

<Obj1, {read, write}>
<Obj3, {read}>
<Obj4, {read, print}>

<Obj2, {write}>
<Obj4, {read}>
<Obj5, {read,write}

<Obj1, {read}>
<Obj4, {execute}>
<Obj5, {read,write}

Domain D1

D2

D3

© 1999 by Ethan L. Miller 19-4

Domain Examples

• Simple personal computers: 2 domains
» User: ability to use only user instructions
» Supervisor: can pretty much do anything

• Unix: many domains
» Domain determined by user ID

– Process inherits domain of user that created it
– Process can inherit the domain of the program’s owner if the

setuid bit is set on the program
» Root user has all rights for all objects
» Domain switch done through OS

– First, switch to supervisor domain via trap instruction
– When OS is done, switch back to user domain using a

“return from interrupt” instruction
– OS switches domain if new process is different from old one



© 1999 by Ethan L. Miller 19-5

Domains in MULTICS

• System composed of
protection “rings”

• Higher ring number == less
protection

» OS in low-numbered rings

» User programs in high-
numbered rings

» Transfer to lower-numbered
ring by “gates” at specific
points

• For rings j, i: if j < i, Dj is a
superset of Di

0

1

n

.

.

.

© 1999 by Ethan L. Miller 19-6

Access Matrix

• Rows of matrix are domains
• Columns are domains &

objects
» Domains can have rights over

other domains

» Domains are themselves
objects

• Entries are operations
permitted on the object within
that domain

Objects

Domains

F1 F2 F3 D1

D1

D2

D3

RX RW

WRP

X

M

M

R = read
W = write
X = execute
P = print
M = modify 

R



© 1999 by Ethan L. Miller 19-7

Using an Access Matrix

• When an process in Di tries to do an operation on object Oj

» Look up row and column in the access matrix
» Check to see that the operation is listed there
» If not allowed, don’t permit the operation
» Process may be in more than one domain...

• Access matrix can be updated dynamically
» Rights in matrix can include

– Ownership of objects
– Granting and revoking other rights
– Switching from one domain to another

» Allows lots of flexibility

© 1999 by Ethan L. Miller 19-8

Mechanism vs. Policy

• Access matrix separates mechanism from policy
» Single mechanism (access matrix) supports many policies
» Policies need not be hard-coded into the OS

• Mechanism
» Provision of methods to specify access rules

– Access matrix
– Rules for manipulating access matrix
– Enforcement of access to and modification of access matrix

» Enforcement of rules contained in matrix

• Policy
» Decisions about which operations are allowed in which domains

– Which domains have rights over an object?
– Which rights are possible for any object?

» Policy is set by the user(s) of the computer system



© 1999 by Ethan L. Miller 19-9

Implementing an Access Matrix

• Access matrix is usually a sparse matrix
» Most entries are empty
» Rows or columns can be represented as lists

• Access control list (ACL): one per object
» Each ACL lists permitted domains & operations for an object
» Example: Object1 => {D1:RW}, {D2,RX}, {D5:RWXP}
» Domains with no rights are omitted from the list

• Capability list: one per domain
» Lists the objects and permitted operations on those objects
» Functions like a key ring
» Example: Domain1 => {F1:RW}, {F4:X}, {F7:RWD}
» Objects with no rights are omitted from the list

© 1999 by Ethan L. Miller 19-10

Securing the Access Matrix

• OS must ensure that the access matrix isn’t modified (or even
accessed) in an unauthorized way

• Access control lists
» Reading or modifying the ACL is a system call
» OS makes sure the desired operation is allowed

• Capability lists
» Can be handled the same way as ACLs: reading and

modification done by OS
» Can be handed to processes and verified cryptographically later

on (more on this next week)
» May be better for widely distributed systems where capabilities

can’t be centrally checked



© 1999 by Ethan L. Miller 19-11

Revoking Access Rights

• Granting rights is easy: rights on objects can include the
ability to give additional rights to domains

» Simply add an entry to the access matrix
» Domain can do something it couldn’t do before

• Revoking rights is more difficult
• Access control lists

» Remove access rights from the list
» Simple & immediate: rights are checked at object

• Capability lists
» Must be able to find the capability to delete it
» May not be difficult if OS keeps capability lists: search process

list for the keys, and delete them
» Can be very difficult if process holds the list: must invalidate

keys at the object (equivalent to changing the lock)

© 1999 by Ethan L. Miller 19-12

Access Control List Systems

• Unix file system
» Access list for each file has exactly three domains on it

– User (owner)
– Group
– Others

» Rights include read, write, execute: interpreted differently for
directories and files

• AFS
» Access lists only apply to directories: files inherit rights from the

directory they’re in
» Access list may have many entries on it with possible rights:

– read, write, lock (for files in the directory)
– lookup, insert, delete (for the directories themselves),
– administer (ability to add or remove rights from the ACL)



© 1999 by Ethan L. Miller 19-13

Capability-Based Systems

• Hydra
» Fixed set of access rights the system knows about & uses
» User programs can define rights and have them maintained by

the OS: interpretation left up to user programs

• Cambridge CAP
» Data capabilities include read, write, execute: managed by OS
» Software capabilities: definition and interpretation left to

subsystem through protected procedures

• Kerberos (combines ACL & capabilities)
» Users get one or more tickets (capabilities)
» Capabilities identify user to system and allow lookup on ACL for

permissions

© 1999 by Ethan L. Miller 19-14

Language-Based Protection

• Protection specified in high-level language
» Enforced by the compiler or interpreter
» Policies can be specified for user objects

• Language can provide protection when hardware or OS
doesn’t support it

» Example: Java (especially sandbox)
» Example: SafeTcl
» Programs written in these languages can’t cause problems

because the language and interpreter won’t let them

• Language can convert protections specified in the language
into those handled by the OS


