Network File Systems

Background: what is a network file system?
Naming

» Lookup

» Transparency
Accessing remote files

» Client’s view of things

» Server’'s view of things (stateful vs. stateless)
Replicating files

» Performance

» Reliability
Example systems

© 1999 by Ethan L. Miller 17-1

What Is a Network File System?

Network (or distributed) file system (DFS) is

» File system distributed across many machines available from
one or more clients

» File system on one machine available from many clients
DFS may manage tens or hundreds (or more) storage
devices

» Storage space may be broken into smaller pieces for easier
management

» Storage spaces may be physically located in different places

® A single storage space is usually the unit that clients can

choose to “import” (allow local users to access)

© 1999 by Ethan L. Miller 17-2




DFS Structures & Naming

® Server: machine that provides services to clients
» May be multiple servers per DFS
» Servers may provide different functions (naming vs. files)
® Client: process (also machine) that makes requests of servers
» Client interface specifies possible file operations (read, etc.)
» Client interface should be transparent: client process can't tell
whether file is local or remote
® Naming: maps between logical names & physical objects
» Multilevel mapping hides the details of where the file is
physically located
» Transparent naming in DFS hides location in network where the
file is stored

» Name mapping may return multiple locations if there’s more
than one copy of the file in the DFS: this information is hidden
from the client

© 1999 by Ethan L. Miller 17-3

Naming & Transparency

® Location transparency: name doesn’t reveal where the file is
physically stored
» Name still corresponds to a specific set of blocks
» Sharing is convenient
» Name translation may be easier

» Can cause problems if server fails or administrator wants to
reorganize the FS (reallocate space)

® Location independence: name doesn’t change if file changes
physical location
» Makes it easier to share the entire storage space
» Separates naming issues from storage issues
» Makes creation of replicas easier

© 1999 by Ethan L. Miller 17-4




Approaches to Naming

® Files named by combining host name and name local to host
» Guarantees a unigue systemwide name
» Causes problems if a file needs to be used
» Sample system: AFS
® Storage spaces (in the form of directory trees) attached to
local directory tree
» Looks like a single directory tree
» Only mounted directories can be accessed
» Directory mount points can be changed
» Sample system: NFS
® Totally integrated file system
» Single global name space for all files and all clients
» Unavailable server => some files and directories may not be

available

© 1999 by Ethan L. Miller 17-5

Accessing Remote Files

® Clients get files from servers when files are needed
® Clients often request the same files many times

»

»

System executables
User on client X always wants specific files of hers

® Reduce network traffic by keeping a copy of file blocks on the
client in a cache

»

»

»

»

»

Fetch data from server if data not in cache
Perform accesses on cached copy
Write data back to server if it changes

Files still have one master copy, but may have fragments
cached throughout many clients

Problem: how does the DFS make sure that cached copies are
consistent (all the same) with each other and the master file if
one or more copies are written?

© 1999 by Ethan L. Miller 17-6




Caching Files: Memory or Disk?

® File data from a server may be cached on disk or in memory
® Advantages of memory:
» Workstations don’t need disks
» Memory is faster than disk
» Large memory can give big performance improvements
» Server caches are always in memory
® Advantages of disk:
» Cache can be larger than memory
» Data in cache survives reboot / failure
— No need to fetch after crash
— May be used to boot the system
» Data in cache is more reliable: delay writes to server longer

© 1999 by Ethan L. Miller 17-7

Caches & Writesto aFile

® Write-through
» Data is written to the server as soon as it's written to cache
» Reliable: client crash doesn’t cause lost data
» Poor performance: client has to write immediately

® Delayed-write

» Data is written to the server some time after it's written to the
client cache

— If file is deleted first, no write to server occurs!
— If data is overwritten, only one write goes to server
» Reliability can be low: crash causes lost data
» Consistency can be difficult: caches hold modified data
» Several variations on policy:
— Write after data reaches a fixed age (often ~30 seconds)
— Write after file has been closed: write-on-close

© 1999 by Ethan L. Miller 17-8




Keeping Data Consistent

Clients can keep copies of the same file

One client might write the file - how do the others find out
about the change?
Client-initiated approach

» Client checks with the server to see if the file has been updated
before using it

» Server then checks to see whether any other client has written
the file

Server-initiated approach

» Server keeps track of which clients are caching and modifying
each file

» Server prevents consistency, perhaps by telling clients to
remove files modified elsewhere from their own caches

© 1999 by Ethan L. Miller 17-9

Stateful File Servers

Server keeps track of which clients have opened which files,
and also keep information for each file opened by a client

» Current position in the file
» Blocks the client has modified
When client opens a file

» Server fetches file info from disk, holds it in memory, and gives
the user an identifier for use with future accesses

» Server holds info in memory until file is explicitly closed

» Server can check security on file open and use cryptographic
methods to ensure that future accesses are from the same client

Stateful file servers can perform better
» Fewer security checks
» Server can read ahead on the file if client reads sequentially

» Server can keep track of multiple clients who are accessing the
same file and manage consistency

© 1999 by Ethan L. Miller 17-10




Stateless File Servers

Stateless file servers keep no per-client information
» Still allowed to cache inodes and file blocks in memory!
» Can't keep track of which files are actually open or which client
IS using them
Individual requests are standalone
» Contain file identifier, offset in file, information on permissions
» File identifier need not be file name (usually inode number)
No need for clients to open and close files

» Clients must still get a file identifier that corresponds to a
particular file name

» Server has to check permissions on every request!
Performance can be slower than stateful, but

» Easier to recover from client or server failure

» Makes maintaining consistency easier (albeit slower)

© 1999 by Ethan L. Miller 17-11

Stateful vs. Stateless File Service

Failure recovery

» Stateful server loses all of its volatile state in a crash - restores
state by communicating with clients

» Stateful server must be aware of clients that fail as well -
deallocate resources used to cache their files

» Stateful server & client barely notice that failure has occurred

— Server that fails simply comes back up - no per-client
information to recover

— Server has no info to reclaim for client that fails
Consistency
» Stateless servers can’t easily maintain consistency themselves
» Stateful servers can track who’s caching which files
Performance
» Stateful servers tend to be faster
» Stateless servers recover from failures faster

© 1999 by Ethan L. Miller 17-12




Replicating Files

® Problem: file server crashes => file unavailable (or even lost!)
® Solution: keep multiple copies of the file on different servers
® Benefits
» Improves availability & reliability
» May improve performance (get the nearest copy)
® |ssues:
» Naming scheme must map name to a particular replica
— Pick the nearest or least loaded server
— Existence of replicas must be invisible to clients
» Consistency
— Updates must go to all replicas
— Consistency must be kept as if all replicas were a single file

© 1999 by Ethan L. Miller 17-13

NFS

® NFS (Network File System) is a classic distributed file system
® Naming

» Names are location transparent but not location independent

» Names need not be consistent between two clients
® Server state

» Stateless file servers: easier to recover from crashes (which
were relatively common when NFS was designed)

» Each request must contain all information necessary for the 1/0,
including user & authentication info

® Replication

» NoO automatic replication

» Clients can keep copies in their local file systems
Security

» Hah!

© 1999 by Ethan L. Miller 17-14




AFS

AFS (Andrew File System)
Naming

» Domains are mentioned as part of the name

» Names within a domain are location transparent & independent
Server state

» Stateful file servers - slower & more complex recovery, but
better performance

» Authentication done only when the file is opened
Replication
» Automatic replication is supported

» Clients can keep copies long-term locally, particularly if they
don’t change often (system files)

Security
» Pretty good (uses Kerberos)

© 1999 by Ethan L. Miller 17-15




